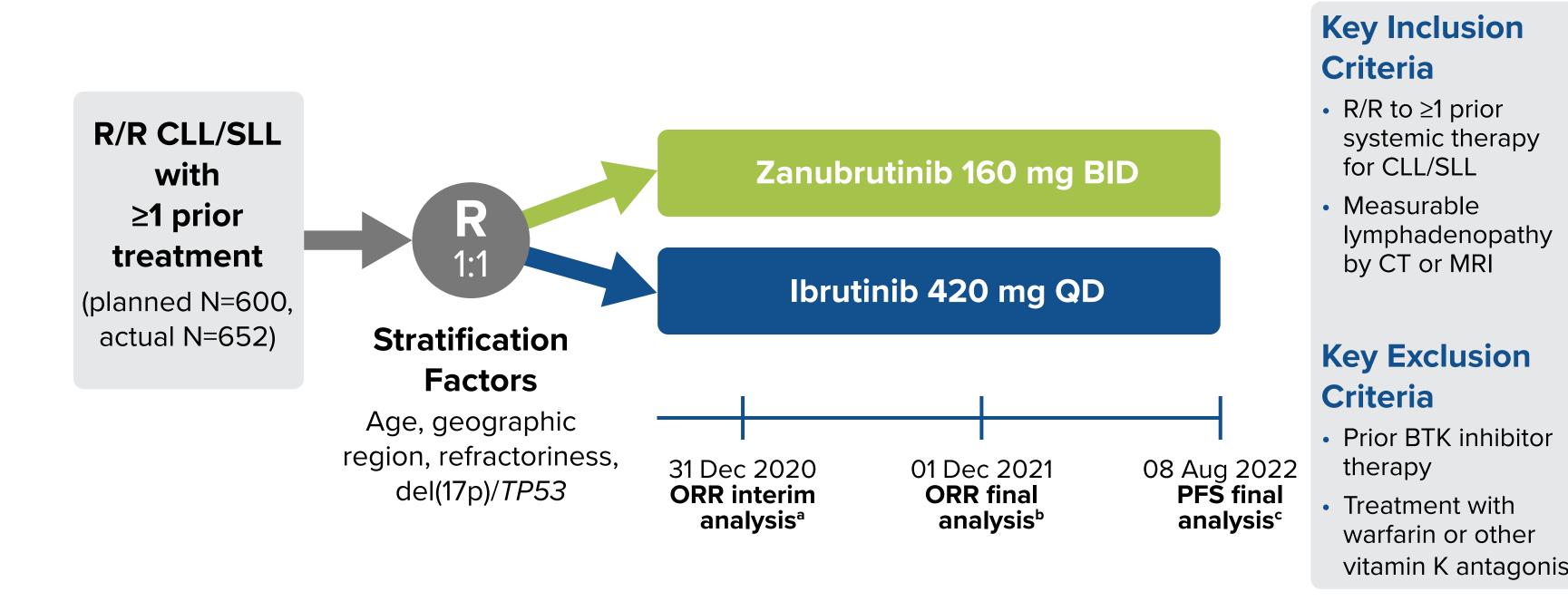
Zanubrutinib Demonstrates Superior Progression-Free Survival Compared With Ibrutinib for Treatment of Relapsed/Refractory Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma: Results From Final Analysis of **ALPINE Randomized Phase 3 Study**

12 antional Clinical Research Center for Hematological Disorders, Institute of Hematological Disorders, Institute of Hematological Disorders, Institute of Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union I Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Institute of Hematology and Blood Diseases Hospital, Research Center for Hematological Disorders, Institute of Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union I Clinical Research Center for Hematological Disorders, Institute of Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Research Center for Hematological Disorders, Institute of Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Redical Sciences and Peking Union I Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Research Center for Hematology and Blood Diseases Hospital, Research Center for Hematology and Blood Diseases Hospital, Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Research Center for Hematolo 10 Exe and Bone Marrow Transplant of Hematology, University, Prague, Czech Republic; ¹³ Faculty of Medical Sciences, Poznan, Poland; ¹⁴ Henan Cancer Hospital, Prague, Czech Republic; ¹⁴ Henan Cancer Hospital, Prague, Pragu 18 Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Houston, TX, USA; 18 Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 18 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Rerenga Ora Blood and Cancer Center, Te Whatu Ora Health New Zealand; 19 Te Reren 121 Exe at a light and transplantology, Karolinska Institutet, Stockholm, Sweden; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 20 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Karolinska University of Silesia, Katowice, Poland; 24 Department of Hematology, Katowice, Poland; 24 Department of ²⁵Texas Oncology-Tyler/US Oncology Research, Tyler, TX, USA; ²⁶BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene (Beijing) Co., Ltd., San Mateo, CA, USA; ²⁷Fred Hutchinson Cancer Center, Seattle, WA, USA; and ²⁸University of Washington, Seattle, WA, USA; ²⁷Fred Hutchinson Cancer Center, Seattle, WA, USA; and ²⁸University of Washington, Seattle, WA, USA; ²⁶BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene (Beijing) Co., Ltd., Beijing) Co., Ltd., Beijing, China and BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene (Beijing) Co., Ltd., Beijing) Co., Ltd., Beijing, China and BeiGene (Beijing) Co., Ltd., Beijing) Co., Ltd., Bei


INTRODUCTION

- B-cell antigen receptor (BCR) signaling, which is dependent on Bruton tyrosine kinase (BTK), is required for tumor expansion and proliferation in CLL and B-cell lymphomas¹
- Ibrutinib, a first-in-class, covalent BTK inhibitor, has transformed CLL therapy; however, it has properties that limit use
- Treatment discontinuation from toxicities has been reported in 16-23% of patients²⁻⁵ -Exposure coverage between dosing intervals falls below IC₅₀, and variable BTK occupancy
- at trough has been observed⁶
- Zanubrutinib is a second-generation BTK inhibitor that was specifically designed to improve BTK specificity over ibrutinib
- -Zanubrutinib has exposure coverage above its IC_{50}^{7}
- -Higher drug concentration/IC₅₀ ratios would be expected to lead to more sustained and complete BTK inhibition to improve efficacy
- In a global, randomized phase 3 study (ALPINE; NCT03734016), zanubrutinib was compared head to head with ibrutinib in patients with relapsed or refractory (R/R) CLL/SLL⁸⁻¹⁰
- At a predefined response analyses in the ALPINE study, zanubrutinib demonstrated superior overall response rate (ORR) compared with ibrutinib by IRC and investigator (INV)^{9,10}
- This presentation reports the clinical outcomes of the final PFS analysis of the ALPINE study

METHODS

- The ALPINE study was designed to compare the efficacy, safety, and adverse event (AE) profile of zanubrutinib with those of ibrutinib in patients with R/R CLL/SLL (Figure 1); complete methodology is available in Hillmen et al 2022⁹ and Brown et al 2022¹⁰
- As the primary endpoint of ORR was superior with zanubrutinib in preplanned analyses,^{9,10} the key secondary efficacy endpoint of PFS was tested for noninferiority under hierarchical testing in this PFS analysis when 205 events had occurred
- -If PFS noninferiority between zanubrutinib and ibrutinib was demonstrated, superiority of zanubrutinib vs ibrutinib would be tested and claimed if the 2-sided P value was < 0.04996

Figure 1. ALPINE Study Design

^aORR interim analysis scheduled approximately 12 months after the enrollment of the first 415 patients. ^bORR final analysis scheduled approximately 12 months after enrollment completion. °PFS final analysis scheduled when 205 events had occurred.

RESULTS

- A total of 652 patients from 15 countries were randomized to receive zanubrutinib (n=327) or ibrutinib (n=325)
- At the time of data cutoff (8 August 2022), 72.8% and 58.5% of patients were still receiving zanubrutinib or ibrutinib, respectively
- -The most common reasons for treatment discontinuation were AEs (16.2% vs 22.8%) or progressive disease (7.3% vs 12.9%) with zanubrutinib vs ibrutinib, respectively
- Demographic and clinical characteristics of the 2 groups were generally balanced at baseline (Table 1)

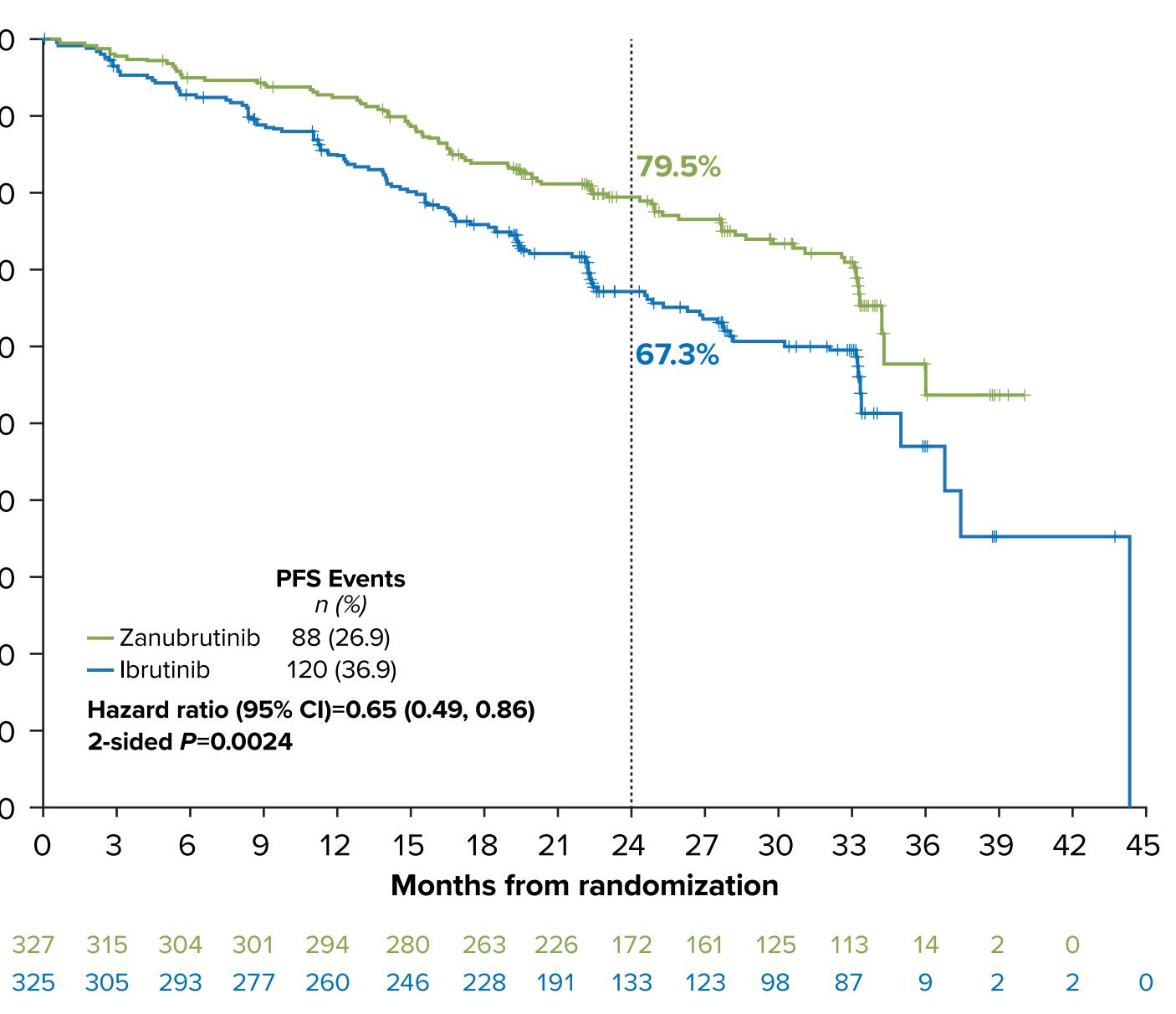
RESULTS (cont.)

Table 1. Patient Demographics and Disease Characteristics

Characteristics Median age (range), y Aged ≥65 years, n (%) Male, n (%) ECOG PS ≥1, n (%) Median prior lines of s >3 prior lines, n (%) del(17p) and/or *TP53*^m del(17p) TP53^{mut} without del(17 del(11q), n (%) IGHV mutational statu Mutated Unmutated Complex karyotype^a ^aComplex karyotype is defined as having \geq 3 abnormalities. Efficacy

- zanubrutinib
- (Figure 4)
- Figure 2. PFS by IRC in All Patients

No. at risk Zanubrutini Ibrutinib

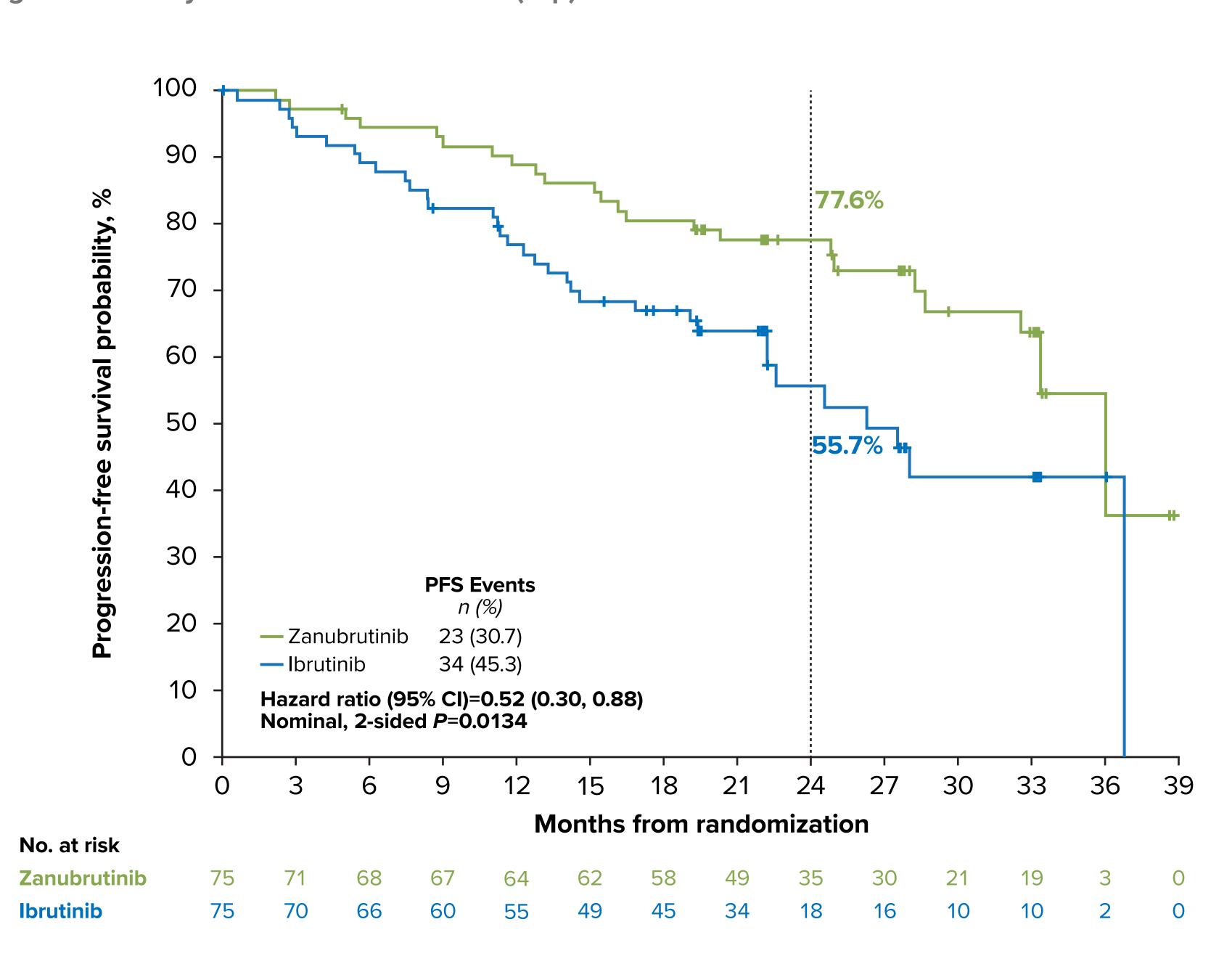

Jennifer R. Brown,¹ Barbara Eichhorst,² Peter Hillmen,³ Nicole Lamanna,⁴ Susan M. O'Brien,⁵ Constantine S. Tam,^{6,7} Lugui Qiu,⁸ Maciej Kaźmierczak,⁹ Wojciech Jurczak,⁹ Wojciech Jurczak,¹⁰ Keshu Zhou,¹¹ Martin Šimkovič,^{12,13} Jiří Mayer,¹⁴ Amanda Gillespie-Twardy,¹⁵ Alessandra Ferrajoli,¹⁶ Peter S. Ganly,¹⁷ Robert Weinkove,^{18,19} Sebastian Grosicki,²⁰ Andrzej Mital,²¹ Tadeusz Robak,²² Anders Österborg,^{23,24} Habte A. Yimer,²⁵ Tommi Salmi,²⁶ Megan (Der Yu) Wang,²⁶ Lina Fu,²⁶ Jessica Li,²⁶ Kenneth Wu,²⁶ Aileen Cohen,²⁶ and Mazyar Shadman^{27,28}

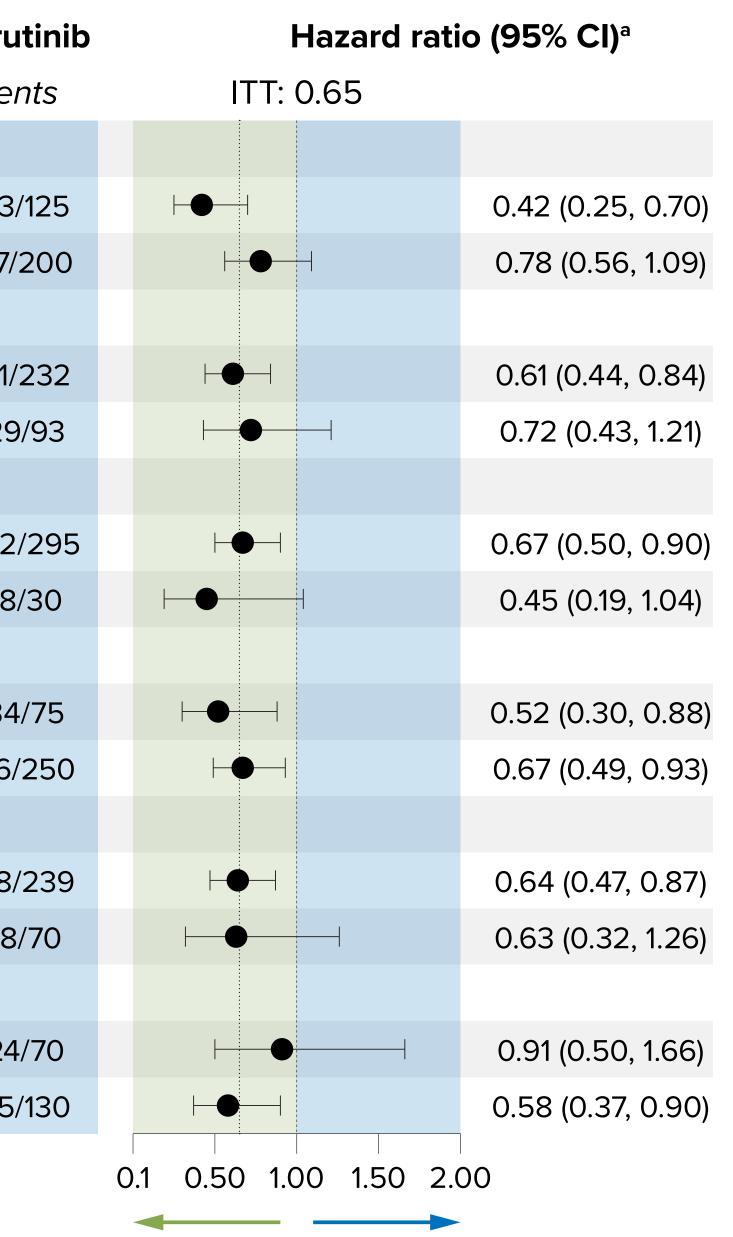
	Zanubrutinib (n=327)	lbrutinib (n=325)
years	67 (35-90)	68 (35-89)
6)	201 (61.5)	200 (61.5)
	213 (65.1)	232 (71.4)
	198 (60.6)	203 (62.5)
systemic therapy (range)	1 (1-6)	1 (1-12)
	24 (7.3)	30 (9.2)
^{mut} , n (%)	75 (22.9)	75 (23.1)
	45 (13.8)	50 (15.4)
17p)	30 (9.2)	25 (7.7)
	91 (27.8)	88 (27.1)
tus, n (%)		
	79 (24.2)	70 (21.5)
	239 (73.1)	239 (73.5)
	56 (17.1)	70 (21.5)

• With a median follow-up of 29.6 month, zanubrutinib PFS by IRC was superior to ibrutinib in the ITT population; identical statistical values were reported when assessed by INV (Figure 2) –Median PFS by IRC was 35.0 month (95% CI: 33.2, 44.3) with ibrutinib but not reached with

PFS favored zanubrutinib across major subgroups (Figure 3), including patients with del(17p)/TP53^{mut}

• As of 8 August 2022, fewer deaths were reported in the zanubrutinib group than in the ibrutinib group -Median overall survival was not reached in either treatment group


Figure 3. PFS by IRC Across Subgroups


Subgroup	Zanubrutinib	lbru
	Events/	Patie
Age group		
<65 years	23/126	43
≥65 years	65/201	77/
Sex		
Male	59/213	91/
Female	29/114	29
Prior lines of therapy		
1–3	80/303	102
>3	8/24	18
Baseline del(17p)/TP53 mutational stat	us	
Present	23/75	34
Absent	65/251	86/
Baseline IGHV mutational status		
Unmutated	72/239	98,
Mutated	15/79	18
Complex karyotype		
Yes	20/56	24
No	37/153	45

Favors zanubrutinib Favors ibrutinib

Figure 4. PFS by IRC in Patients With del(17p)/TP53^{mut}

^aHazard ratio and 95% CI were unstratified for subgroups.

Safety

- Zanubrutinib safety profile was favorable to that of ibrutinib (Table 2)
- The most common AEs occurring in ≥20% of patients in either arm were diarrhea (16% vs 24%), hypertension (22% vs 20%), neutropenia (23% vs 18%), COVID-19 (23% vs 18%), and upper respiratory tract infection (21% vs 14%) with zanubrutinib vs ibrutinib, respectively
- The rate of atrial fibrillation/flutter was lower with zanubrutinib compared with ibrutinib (5.2% vs 13.3%; Figure 5)
- Six (1.9%) serious cardiac AEs were reported with zanubrutinib (atrial fibrillation/flutter, n=2; myocardial infarction/acute coronary syndrome, n=2; congestive heart failure, n=2) vs 25 (7.7%) with ibrutinib (**Table 3**)
- There were no fatal cardiac events with zanubrutinib vs 6 (1.9%) with ibrutinib

Table 2. Overall Safety Profiles

Safety profile, n (%)	Zanubrutinib (n=324)		
Median treatment duration, months	28.4	24.3	
AE (any grade)	318 (98.1)	321 (99.1)	
Grades 3 to 5	218 (67.3)	228 (70.4)	
Grade 5	33 (10.2)	36 (11.1)	
Serious AE	136 (42.0)	162 (50.0)	
AEs leading to			
Dose reduction	40 (12.3)	55 (17.0)	
Dose interruption	162 (50.0)	184 (56.8)	
Treatment discontinuation	50 (15.4)	72 (22.2)	

Table 3. Cardiac Profiles and Adverse Events

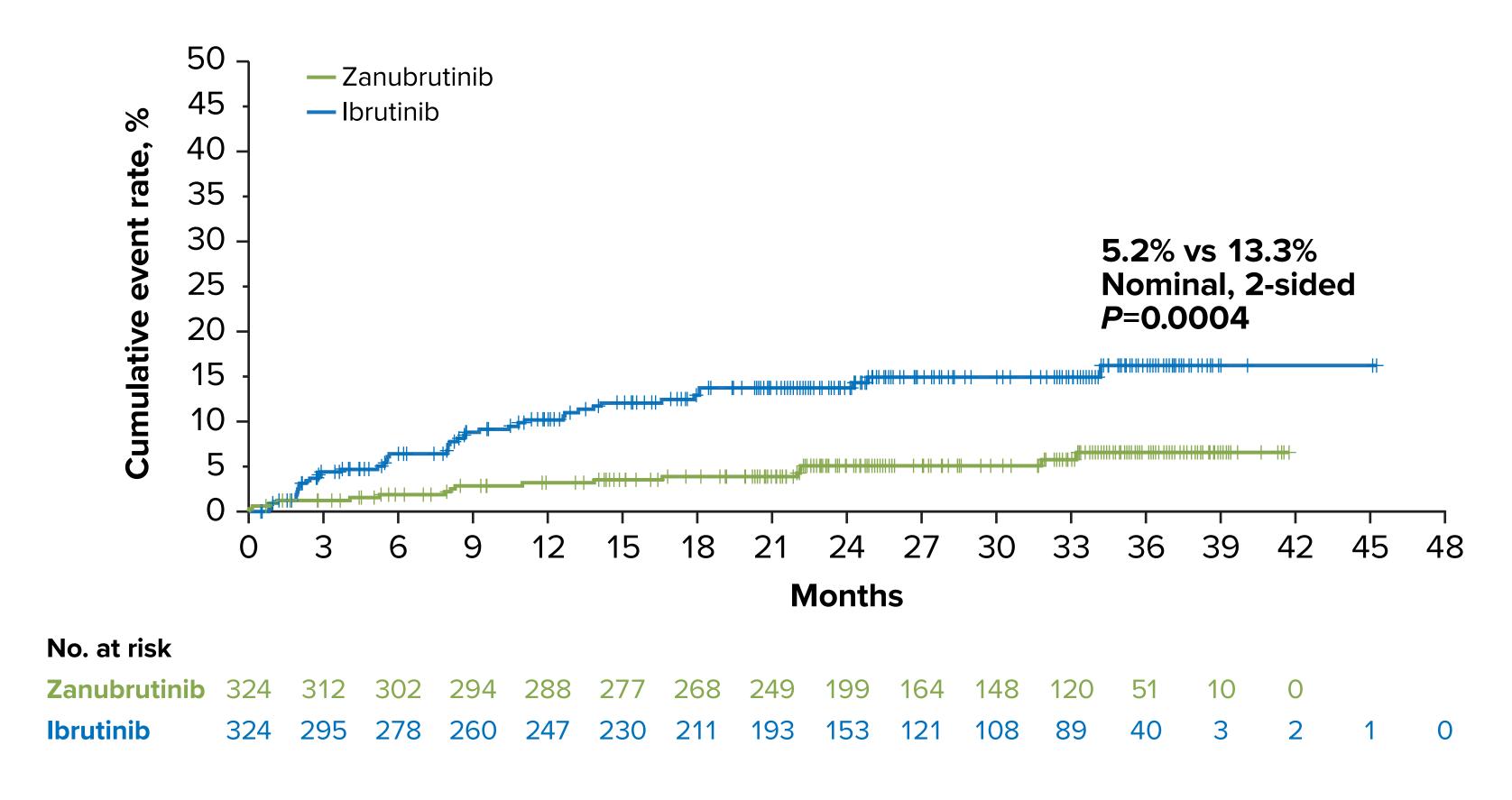
Cardiac AEs, n (%)	Zanubrutinib (n=324)	lbrutinib (n=324)
Cardiac AEs	69 (21.3)	96 (29.6)
Serious cardiac AEs	6 (1.9)	25 (7.7)
Cardiac AEs leading to treatment discontinuation	1 (0.3)	14 (4.3)
Ventricular extrasystoles	1 (0.3)	0
Atrial fibrillation	0	5 (1.5)
Cardiac arrest	0	2 (0.6) ^a
Cardiac failure	0	2 (0.6)
Cardiac failure acute	0	1 (0.3)ª
Congestive cardiomyopathy	0	1 (0.3)ª
Myocardial infarction	0	1 (0.3)ª
Palpitations	0	1 (0.3)
Ventricular fibrillation	0	1 (0.3)

^aCardiac deaths. One death not listed due to myocardial infarction with ibrutinib discontinuation due to diarrhea 14 days before the fatal event.

REFERENCES

- 1. Singh et al. Molecular Cancer 2018;17:57
- 2. Sharman et al. *Blood* 2017;130(suppl 1):4060 3. Mato et al. *Haematologica* 2018;103(5):874-879
- 4. Munir et al. Am J Hematol 2019;94(12):1353-1363
- 5. Ghia et al. EHA 2021. Abstract EP636
- 6. Tam et al. Expert Rev Clin Pharmacol 2021;14(11):1329-1344
- 7. Ou et al *Leukemia* & Lymphoma 2021;62(11):2612-2624 8. Hillmen et al. Future Oncol 2020;16(10):517-523.
- 9. Hillmen et al. J Clin Oncol 2022. Online ahead of prin
- 10. Brown et al. *N Engl J Med* 2022. Online ahead of print

ACKNOWLEDGMENTS We would like to thank the investigators, site support staff, and


especially the patients for participating in this study. We would like to thank our independent data monitoring committee members for their efforts in this study and the BeiGene ALPINE study team for all their efforts and hard work.

This study was sponsored by BeiGene. Medical writing and editoria support was provided by Regina Switzer, PhD, and Elizabeth Hermans, PhD, of BeiGene; logistical support was provided by Bio Connections LLC and funded by BeiGene

CONCLUSIONS

- Zanubrutinib demonstrated superior PFS over ibrutinib in patients with R/R CLL/SLL
- PFS benefit seen across all major subgroups, including the del(17p)/TP53^{mut} population
- Zanubrutinib had a favorable safety profile compared with that of ibrutinib
- Zanubrutinib had a lower rate of grade ≥ 3 and serious AEs as well as fewer AEs leading to treatment discontinuation and dose reduction
- Zanubrutinib had a better cardiac profile than ibrutinib, with lower rates of atrial fibrillation, serious cardiac events, cardiac events leading to treatment discontinuation, and fatal cardiac events
- ALPINE is the first study to demonstrate PFS superiority in a headto-head comparison of BTK inhibitors in patients with R/R CLL/SLL
- Zanubrutinib has now proven superiority to ibrutinib in both PFS and ORR in R/R CLL/SLL

DISCLOSURES Disclosures are listed in Brown et al 2022, accessible through the Quick Response (QR) Code.

CORRESPONDENCE

Jennifer R. Brown, MD, PhD Dana-Farber Cancer Institute 450 Brookline Avenue, Boston MA 02215 USA jennifer_brown@dfci.harvard.edu

The ALPINE final analvsi manuscript (Brown et al N Engl J Med 2022) and plain language summary can be accessed through the Quick Response (QR)