Results of a Phase 2 Expanded Access Study of Zanubrutinib in Patients With Waldenström Macroglobulinemia

Jorge J. Castillo,¹ Edwin C. Kingsley,² Mohit Narang,³ Habte A. Yimer,⁴ Constantin A. Dasanu,⁵ Jason M. Melear,⁶ Morton Coleman,¹ Charles M. Farber,⁶ Mukul Gupta,⁶ Jonah Shulman,¹⁰ Emily H. Mantovani,¹¹ Xiaowei Zhang,¹¹ Aileen Cohen,¹¹ and Jane Huang¹¹

¹Dana-Farber Cancer Institute, Boston, MA, USA; ¹Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA; ¹US Oncology Research, Tyler, TX, USA; ¹US Oncology Research, TYL Austin, TX, USA; 7Clinical Research Alliance, New York, NY, USA; 8Atlantic Hematology Oncology, Morristown Medical Center, Morristown, NJ, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Sansum Clinic, Santa Barbara, CA, USA; 9RidleyTree Cancer Center at Santa Barbara, CA, USA; 9RidleyTree

INTRODUCTION

- WM is an indolent B-cell non-Hodgkin lymphoma characterized by IgM-secreting clonal lymphoplasmacytic cells in bone marrow and extramedullary sites¹
- Zanubrutinib (BGB-3111) is a second-generation BTK inhibitor designed to maximize BTK occupancy and minimize activation of off-target kinases which may contribute to the AE profile of this class of drugs^{2,3}
- BTK inhibitors, including zanubrutinib, have been shown to be effective treatments for patients with WM, as demonstrated by the results of the phase 3 ASPEN study⁴
- Zanubrutinib has also demonstrated fewer toxic effects compared with the first-generation BTK inhibitor ibrutinib in the phase 3 ASPEN study⁴
- In June 2021, zanubrutinib was added as a preferred therapy for WM per the NCCN Guidelines® in Oncology version 1.2022⁵
- On August 31, 2021, zanubrutinib was approved by the FDA for the treatment of adult patients with WM at a dose of 320 mg QD or 160 mg BID⁶

OBJECTIVES

Primary

 To provide real-world experience with zanubrutinib for treatment of patients with WM for whom no other clinical trials were available

Secondary

- To assess safety of zanubrutinib in patients with WM
- To assess efficacy of zanubrutinib in patients with WM

METHODS

- A phase 2 expanded access study (BGB-3111-216; NCT04052854) in patients with TN or R/R WM in academic and community medical centers across the **United States**
- Eligible patients with TN or R/R WM were enrolled and received zanubrutinib monotherapy in 28-day cycles at a dose of 320 mg QD or 160 mg BID based on the investigator's discretion
- Efficacy assessments were performed based on modified Owen criteria (6th International Workshop on WM⁷) at least every 6 months
- AEs reported on this study included: any-grade serious AEs, grade 3/4 AEs, and the following AEs at any severity level: anemia, atrial fibrillation or flutter, hemorrhage, hypertension, infections, major hemorrhage, myalgias or arthralgias, neutropenia, second primary malignancies, thrombocytopenia, and tumor lysis syndrome
- The study was terminated by the sponsor in July 2021, when all patients were given the option to continue commercial zanubrutinib therapy through a patient-assistance program

RESULTS

- Fifty patients were enrolled and treated (R/R n=33; TN n=17) across 10 academic and community medical centers in the United States (**Table 1**)
- Most patients had either intermediate (n=27; 54.0%) or high-risk (n=20; 40.0%) disease
- Forty-one patients were assigned to receive zanubrutinib 160 mg BID, and 9 patients were assigned to receive zanubrutinib 320 mg QD
- Median number of prior therapies for patients with R/R WM was 2
- Nine patients discontinued drug before the first response assessment (Figure 1)
- Eight transitioned to commercial supply of zanubrutinib due to study closure
- One discontinued based on investigator decision

Table 1. Baseline Characteristics

Characteristics	TN (N=17)	R/R (n=33)	Overall (N=50)
Age, median (range), years	72 (61-83)	72 (47-93)	72 (47-93)
≤65 years, n (%)	2 (11.8)	7 (21.2)	9 (18.0)
Male, n (%)	10 (58.8)	17 (51.5)	27 (54.0)
Race, n (%)			
Asian	1 (5.9)	1 (3.0)	2 (4.0)
Native Hawaiian or other pacific islander	0	1 (3.0)	1 (2.0)
White	12 (70.6)	29 (87.9)	41 (82.0)
Multiple	0	1 (3.0)	1 (2.0)
Othera	4 (23.6)	1 (3.0)	5 (10.0)
ECOG PS, n (%)			
0	3 (17.6)	4 (12.1)	7 (14.0)
1	12 (70.6)	27 (81.8)	39 (78.0)
2	2 (11.8)	2 (6.1)	4 (8.0)
Time from initial diagnosis to first dose, median (range), months	3.7 (0.7-141.7)	92.9 (8.0-302.0)	70.4 (0.7-302.0)
Prognostic group at study entry for WM, n (%)			
Low risk	2 (11.8)	0	2 (4.0)
Intermediate risk	10 (58.8)	17 (51.5)	27 (54.0)
High risk	5 (29.4)	15 (45.5)	20 (40.0)
Missing	0	1 (3.0)	1 (2.0)
Number of prior lines of therapy, n (%)			
0	17 (100.0)	0	17 (34.0)
1-3	0	29 (87.9)	29 (58.0)
>3	0	4 (12.1)	4 (8.0)

Figure 1. Patient Disposition

Efficacy

- A total of 41 patients had ≥1 response evaluations while on study (efficacy evaluable, n=41; Table 2)
- Overall, 85.4% (35/41) of patients responded to treatment, with 73.2% (30/41) achieving a major response and 39.0% (16/41) achieving a very good partial response
- Responses were similar between patients with TN or R/R and in patients who received doses of 160 mg BID or 320 mg QD
- PFS and OS were immature due to short follow-up, and the median was not met

Table 2. BOR by Investigator Assessment

	Patients		Dose		Overell
BOR by investigator assessment, ^a n (%)	TN (n=11)	R/R (n=30)	160 mg BID (n=33)	320 mg QD (n=8)	Overall (N=41)
Very good partial response	3 (27.3)	13 (43.3)	13 (39.4)	3 (37.5)	16 (39.0)
Partial response	4 (36.4)	10 (33.3)	12 (36.4)	2 (25.0)	14 (34.1)
Minor response	1 (9.1)	4 (13.3)	4 (12.1)	1 (12.5)	5 (12.2)
Stable disease	2 (18.2)	0	1 (3.0)	1 (12.5)	2 (4.9)
Progressive disease	1 (9.1)	3 (10.0)	3 (9.1)	1 (12.5)	4 (9.8)
Very good partial response or complete response	3 (27.3)	13 (43.3)	13 (39.4)	3 (37.5)	16 (39.0)
Major response rate ^b	7 (63.6)	23 (76.7)	25 (75.8)	5 (62.5)	30 (73.2)
Overall response rate ^c	8 (72.7)	27 (90.0)	29 (87.9)	6 (75.0)	35 (85.4)

Safety

- Median duration of treatment exposure was 9.20 months (**Table 3**)
- Thirty-eight (76.0%) patients experienced ≥1 TEAE (**Table 4**)
- Thirty-six (72.0%) patients experienced ≥1 TEAE of interest (Table 5)
- No new safety signals were observed; and no major differences were seen in the safety profile between patients with TN or R/R and in those assigned to 160 mg BID or 320 mg QD

Table 3. Treatment Exposure

^aEfficacy evaluable population. ^bMajor response rate includes patients achieving very good partial response and partial response rate includes patients that achieved very good partial response, partial response or minor response.

Treatment exposure	TN (n=17)	R/R (n=33)	Overall (N=50)
Duration of exposure, median (range), months ^a	8.3 (1.8-19.5)	9.8 (1.4-20.0)	9.2 (1.4-20.0)
<3 months, n (%)	4 (23.5)	3 (9.1)	7 (14.0)
3 to <6 months, n (%)	3 (17.6)	2 (6.1)	5 (10.0)
6 to <9 months, n (%)	2 (11.8)	9 (27.3)	11 (22.0)
9 to <12 months, n (%)	1 (5.9)	6 (18.2)	7 (14.0)
>12 months, n (%)	7 (41.2)	13 (39.4)	20 (40.0)
Number of treatment cycles received, median (range) ^b	9.0 (2.0-21.2)	10.7 (1.5-21.7)	10.0 (1.5-21.7)
Patients with dose reduction, n (%)°	1 (5.9)	4 (12.1)	5 (10.0)

Table 4. TEAEs (≥5% in the Overall Population)

TEAE ^{a,b}	TN (n=17)		R/R (n=33)		Overall (N=50)	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Patients with ≥1 TEAE, n (%)	13 (76.5)	2 (11.8)	25 (75.8)	11 (33.3)	38 (76.0)	13 (26.0)
Arthralgia	3 (17.6)	0	7 (21.2)	1 (3.0)	10 (20.0)	1 (2.0)
Contusion	2 (11.8)	0	3 (9.1)	0	5 (10.0)	0
Epistaxis	1 (5.9)	0	4 (12.1)	0	5 (10.0)	0
Hypertension	O	0	5 (15.2)	4 (12.1)	5 (10.0)	4 (8.0)
Increased tendency to bruise	2 (11.8)	0	3 (9.1)	0	5 (10.0)	0
Pneumonia	1 (5.9)	1 (5.9)	4 (12.1)	1 (3.0)	5 (10.0)	2 (4.0)
Skin infection	1 (5.9)	0	3 (9.1)	0	4 (8.0)	0
Upper respiratory tract infection	1 (5.9)	0	2 (6.1)	O	3 (6.0)	0
Urinary tract infection	1 (5.9)	0	2 (6.1)	0	3 (6.0)	0
_eading to treatment discontinuation, n (%)°	1 (5.9)		2 (6.1)		3 (6.0)	
Leading to treatment dose reduction, n (%)d	1 (5.9)		3 (9.1)		4 (8.0)	
Leading to treatment dose interruption, n (%)e	1 (5	5.9)	5 (1	5.2)	6 (12	2.0)
Leading to death	())	C)

^aAdverse event grades are evaluated based on NCI-CTCAE (version 5.0). Patients with multiple events for a given system organ class or preferred term are counted only once for each category. TEAE leading to treatment discontinuation: pericardial effusion, pleural effusion, skin hemorrhage, soft tissue sarcoma (each n=1) dTEAE leading to treatment dose reduction: arthralgia, contusion, fatigue, pruritus, skin hemorrhage (each n=1). eTEAE leading to treatment dose interruption: arthralgia, contusion, fatigue, pruritus, skin hemorrhage, infection, urinary tract (n=1 each).

Table 5. TEAEs of Interest per Dosing Group

TEAE	Zanubrutinib 160 mg BID (n=41)	Zanubrutinib 320 mg QD (n=9)	Overall (N=50)
Patients with ≥1 TEAE of interest, n (%)	31 (75.6)	5 (55.6)	36 (72.0)
Grade ≥3	7 (17.1)	1 (11.1)	8 (16.0)
Hypertension	4 (9.8)	0	4 (8.0)
Infection	3 (7.3)	1 (11.1)	4 (8.0)
Atrial fibrillation or flutter	1 (2.4)	0	1 (2.0)
Neutropenia	1 (2.4)	0	1 (2.0)
Second primary malignancy	1 (2.4)	0	1 (2.0)
^a Safety population.			

CONCLUSIONS

- Despite differences in demographic characteristics and baseline disease status compared to the phase 3 ASPEN study (older age distribution, worse ECOG PS, longer disease course duration, and poorer prognosis), observed response rates and toxicity profile were comparable
- In patients with ≥1 post-baseline response evaluations, this study demonstrated a higher very good partial response rate, similar major response rate, and lower overall response rate compared to those of the phase 3 ASPEN study
- The higher rate of PD and thus lower ORR compared to that of ASPEN, may be attributed to the less frequent response assessments on this study (every 6 months), in which response assessments were performed monthly for the first year; therefore, any responses that may have been achieved between response assessments (ie, during months 1-5, or months 7-11) would not be captured When considering the 4 patients with a BOR of PD, 3 of these patients had IgM levels reported during the first 6 months (ie, prior to the first response assessment), which indicated a response

ABBREVIATIONS

WM, Waldenström macroglobulinemia

AE, adverse event; BID, twice daily; BOR, best overall response; BTK,

Bruton tyrosine kinase; ECOG PS, Eastern Cooperative Oncology Group

IgM, immunoglobulin M; NCCN, National Comprehensive Cancer Network

performance status; PD, progressive disease; FDA, US Food and Drug Administration

R/R, relapsed/refractory; TEAE, treatment-emergent adverse event; TN, treatment naïve;

NCI-CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events; ORR, overall response rate; PD, progressive disease; QD, once daily;

 The results of this real-world expanded access study were consistent with the established zanubrutinib profile in WM and other B-cell malignancies when administered as monotherapy at a daily dose of 320 mg orally (either as 160 mg BID or 320 mg QD) in patients with intermediate or high-risk R/R or TN WM

REFERENCES

- 1. Argyropoulos et al. Hematol Oncol Clin North Am 2018;32(5):853-864 2. Guo et al. J Med Chem 2019;62(17):7923-7940 3. Tam et al. *Blood* 2019;134(11):851-859 4. Tam et al. Blood 2020;136(18):2038-2050
- 5. NCCN Guidelines for Waldenström Macroglobulinemia/Lymphoplasmacy 6. US Food and Drug Administration. Accessed May 11, 2022. tinyurl.com/yc2a6b43 7. Owen et al. Br J Haematol 2013:160(2):171-176

DISCLOSURES

JJC: consulting with Janssen, Roche/Genentech, BeiGene, AbbVie/Pharmacyclics, Polyneuron; research funding from Pharmacyclics, AbbVie, Janssen, BeiGene,

CMF: stock with Alexion; honoraria from BMS; consulting with ADC Therapeutics, BeiGene, Gilead, Morphosys/Incyte, TG Therapeutics; speakers bureau with

MN: consulting with BeiGene, BMS, Celgene, DSI, Takeda; speakers bureau with BeiGene, BMS, Takeda HAY: stock with Karyopharm; speakers bureau with AstraZeneca, Janssen, BeiGene, GSK, Sanofi, Karyopharm, Amgen, Pharmacyclics JMM: consulting with TG Therapeutics; speakers bureau with Janssen, AstraZeneca MC: stock with Immunomedics; research funding from AbbVie, BMS, Celgene, Genentech, Gilead, BeiGene, InnoCare, Merck, Pfizer, Roche

ADC Therapeutics, Genentech, Gilead, MorphoSys/Incyte Seagen, TG Therapeutics JS: honoraria and consulting with Seagen, TG Therapeutics

EHM, XZ, AC: employment and stock with BeiGene JH: employment and patents with BeiGene; leadership with BeiGene, Protara; research funding from BeiGene; stock with BeiGene, Roche

ACKNOWLEDGMENTS

This study was sponsored by BeiGene. Editorial support was provided by Bio Connections LLC and funded by BeiGene

not be reproduced without permission from EHA® and the author of this poster.

CORRESPONDENCE

Dana-Farber Cancer Institute Boston, Massachusetts USA

jorgej_castillo@dfci.harvard.edu

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and

