A Phase 1A/1B trial of Tislelizumab, an Anti-PD-1 Antibody (Ab), in Patients (Pts) With Advanced Solid Tumors

Sanjeev Deva¹, Jong-Seok Lee², Chia-Chi Lin³, Chia-Jui Yen⁴, Michael Millward⁵, Yee Chao⁶, Bhumsuk Keam⁷, Michael Jameson⁸, Ming-Mo Hou⁹, Yoon-Koo Kang¹⁰, Benjamin Markman¹¹, Chang-Hsien Lu¹², Kun-Ming Rau¹³, Kyung-Hun Lee⁷, Lisa Horvath¹⁴, Michael Friedlander¹⁵, Andrew Hill¹⁶, John Wu¹⁷, Jeannie Hou¹⁷, Jayesh Desai^{18,19}

¹Auckland City Hospital, Auckland, New Zealand; ²Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea; ³National Taiwan University Hospital, Taipei, Taiwan; ⁴National Cheng Kung University Hospital, Tainan, Taiwan; ⁵Linear Clinical Research, Nedlands, Australia; ⁶Taipei Veterans General Hospital, Taipei, Taiwan; ⁷Seoul National University Hospital, Seoul, Republic of Korea; ⁸Regional Cancer Centre, Waikato Hospital, and the University of Auckland Waikato Clinical Campus, Hamilton, New Zealand; ⁹ChangGung Memorial Hospital, Linkou, Taiwan; ¹⁰Asan Medical Center, Seoul, Republic of Korea; ¹¹Monash Health and Monash University, Melbourne, Australia; ¹²Chang-Gung Memorial Hospital, Chia-yi, Taiwan; ¹³Division of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; ¹⁴Chris O'Brien Lifehouse, Camperdown, Australia; ¹⁵Prince of Wales Hospital, Randwick, New South Wales, Australia; ¹⁶Tasman Oncology Research Ltd., Southport, Queensland, Australia; ¹⁹Royal Melbourne Hospital, Parkville, Australia

Background Tislelizumab, a humanized IgG4 monoclonal Ab with high affinity and specificity for PD-1, was engineered to minimize binding to FcvR on macrophages, thus abrogating antibody-dependent phagocytosis, a mechanism of T-cell clearance and potential resistance to anti-PD-1 therapy. Previous reports from this first-in-human study (NCT02407990), and other early phase studies, suggested tislelizumab was generally well tolerated and had antitumor activity in pts with advanced solid tumors. Here we report the effects of tislelizumab in a subset of pts enrolled in phase 1A/1B.

Methods Eligible patients with advanced esophageal [EC], gastric [GC], hepatocellular [HCC], and nonsmall cell lung [NSCLC] cancers were treated with tislelizumab 2 or 5 mg/kg every 2 wks or 3 wks (Q3W); 97% received 5mg/kg Q3W. Adverse events (AEs) were assessed per NCI-CTCAE 4.03 criteria and tumor assessments performed every 9 wks using RECIST v1.1.

Results Of the 207 pts (EC=54; GC=54; HCC=50; NSCLC=49), 114 were male, 111 were Asian, 78 were Caucasian and all but one received \geq 1 prior anticancer therapy. Treatment-related AEs (TRAEs) occurring in \geq 5% of pts were fatigue (8.7%), decreased appetite (6.8%), rash (6.8%), hypothyroidism (6.3%), and nausea (6.3%). Grade \geq 3 TRAEs occurring in \geq 2 pts were pneumonitis (n=3), elevated AST (n=3), and elevated ALT (n=2). Grade 5 TRAEs occurred in two pts: pneumonitis in a pt with NSCLC with compromised pulmonary function and acute hepatitis in a pt with HCC with rapidly progressing disease. As of 27 Apr 2018, a total of 23 pts remained on study treatment; median duration of study follow-up ranged from 4.9–9.9 mo. Responses in each tumor type are presented in the table.

Conclusion Tislelizumab was generally well tolerated and antitumor activity was observed in each tumor type. Tislelizumab, as monotherapy and in combination, is being evaluated in multiple phase 2 and phase 3 studies.

Best Overall Response, Confirmed	EC N=53	GC N=52	HCC N=49	NSCLC N=44
CR, n	1	0	0	0
PR, n	5	7	6	6
SD, n	14	9	19	23
PD, n	25	31	23	12
Not evaluable/missing, n	8	5	1	3
ORR, % (95% CI)	11.3 (4.3, 23.0)	13.5 (5.6, 25.8)	12.2 (4.6, 24.8)	13.6 (5.2, 27.4)
DCR, % (95% CI)	37.7 (24.8, 52.1)	30.8 (18.7, 45.1)	51.0 (36.3, 65.6)	65.9 (50.1, 79.5)

ORR=CR+PR; DCR=CR+PR+SD.

Abbreviations: CI, confidence interval; CR, complete response; DCR, disease control rate; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.