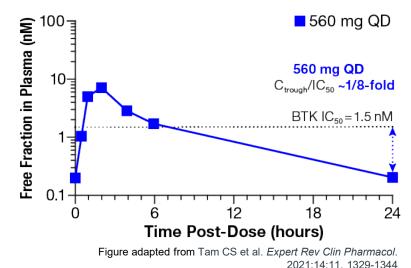
# Zanubrutinib Demonstrates Superior Progression-Free Survival Versus Ibrutinib For Relapsed/Refractory CLL/SLL: ALPINE Final Analysis

Emmanuelle Ferrant,<sup>1</sup> Jennifer R. Brown,<sup>2</sup> Barbara Eichhorst,<sup>3</sup> Peter Hillmen,<sup>4</sup> Nicole Lamanna,<sup>5</sup> Susan M. O'Brien,<sup>6</sup> Constantine S. Tam,<sup>7,8</sup> Lugui Qiu,<sup>9</sup> Maciej Kaźmierczak,<sup>10</sup> Wojciech Jurczak,<sup>11</sup> Keshu Zhou,<sup>12</sup> Martin Šimkovič,<sup>13,14</sup> Jiří Mayer,<sup>15</sup> Amanda Gillespie-Twardy,<sup>16</sup> Alessandra Ferrajoli,<sup>17</sup> Peter S. Ganly,<sup>18</sup> Robert Weinkove,<sup>19,20</sup> Sebastian Grosicki,<sup>21</sup> Andrzej Mital,<sup>22</sup> Tadeusz Robak,<sup>23</sup> Anders Österborg,<sup>24,25</sup> Habte A. Yimer,<sup>26</sup> Tommi Salmi,<sup>27</sup> Megan (Der Yu) Wang,<sup>27</sup> Lina Fu,<sup>27</sup> Jessica Li,<sup>27</sup> Kenneth Wu,<sup>27</sup> Aileen Cohen,<sup>27</sup> and Mazyar Shadman<sup>28,29</sup>

<sup>1</sup>Département Hématologie, CHU de Lyon-Sud, France ; <sup>2</sup>Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; <sup>3</sup>Department of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen, Bonn, Cologne, Duesseldorf, Cologne, Germany; <sup>4</sup>St James's University Hospital, Leeds, United Kingdom; <sup>5</sup>Herbert Inving Comprehensive Cancer Center, Columbia University, New York, NY, USA; <sup>6</sup>Chao Family Comprehensive Cancer Center, University of California, Invine, CA, USA; <sup>7</sup>The Alfred Hospital, Melbourne, Victoria, Australia; <sup>8</sup>Monash University, Melbourne, Victoria, Australia; <sup>9</sup>State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland; <sup>11</sup>Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; <sup>12</sup>Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; <sup>13</sup>4th Department of Internal Medicine - Hematology, Masaryk University Hospital, Hradec Kralove, Czech Republic; <sup>14</sup>Faculty of Medicine, Charles University, Prague, Czech Republic; <sup>15</sup>Department of Internal Medicine-Hematology and Oncology, Masaryk University Hospital, Bron, Czech Republic; <sup>16</sup>Faculty of Medicine, Charles University, Allows, VA, USA; <sup>17</sup>Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; <sup>16</sup>Department of Haematology, Christchurch, New Zealand; <sup>19</sup>Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland; <sup>24</sup>Department of Hematology, Medical University of Gdańsk, Gdańsk, Poland; <sup>23</sup>Medical University of Lodz, Lodz, Poland; <sup>24</sup>Department of Oncology-Pathology, Karolinska Institute of Medical Research, Wellington, New Zealand; <sup>21</sup>Department of Hematology and Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland; <sup>22</sup>Department of H


Presented at the 34<sup>th</sup> French Society of Hematology Congress, March 29-30, 2023. **Session SCO 08: SCO 08 - Lymphoproliferative syndromes.** 

### **Disclosures**

**Emmanuelle Ferrant, MD** reports consulting role with and travel expenses from Abbvie, AstraZeneca, and Janssen-Cilag

### **Bruton Tyrosine Kinase Inhibition in CLL**

- B-cell antigen receptor (BCR) signaling is required for tumor expansion and proliferation in CLL and B-cell lymphomas<sup>1</sup>
  - BCR signaling is dependent on Bruton's Tyrosine Kinase (BTK)
- Ibrutinib, a first-generation BTK inhibitor, transformed CLL therapy; however, it has properties that limit use<sup>2</sup>
  - Treatment discontinuation from toxicities has been reported in 16%-23% of patients<sup>3-6</sup>
  - Exposure coverage between dosing intervals falls below IC<sub>50</sub> and variable BTK occupancy at trough has been observed

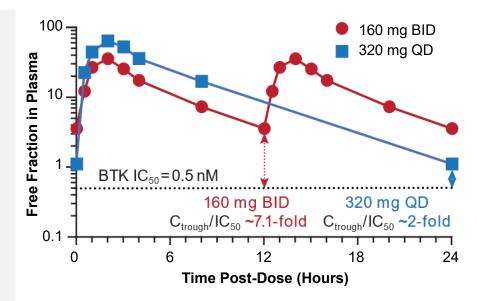
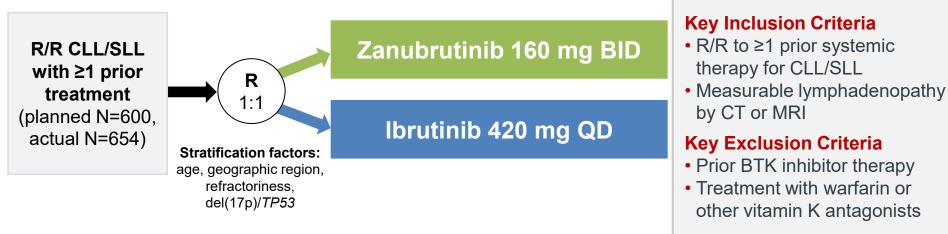


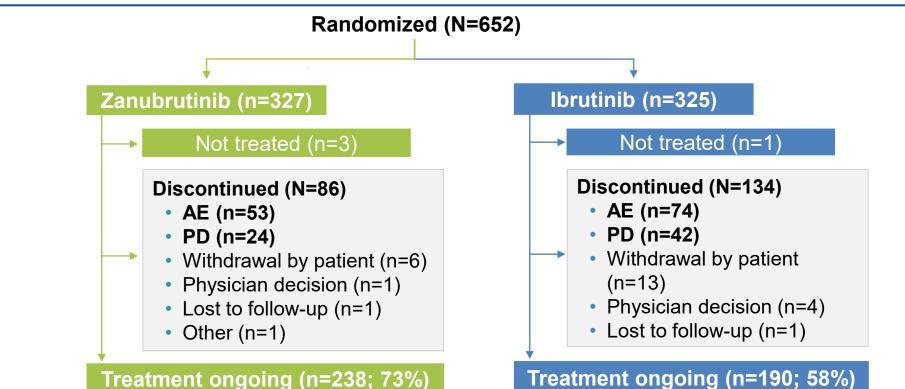
Ibrutinib concentration-time profile

<sup>&</sup>lt;sup>1</sup>Singh SP, Dammeijer F and Hendriks RW. *Molecular Cancer.* 2018; 17:57. <sup>2</sup>Molis S, Matures E, Tam C, Polliack A. *Hematol Oncol.* 2020; 38: 129-136. <sup>3</sup>Sharman JP, Black-Shinn JL, Clark J, et al. *Blood.* 2017;130(suppl 1):4060. <sup>4</sup>Mato AR, Nabhan C, Thompson MC, et al. *Haematologica.* 2018;103(5):874-879. <sup>5</sup>Munir T, Brown JR, O'Brien S, et al. *Am J Hematol.* 2019;94(12):1353-1363. <sup>6</sup>Ghia P, Owen C, Robak T, et al. EHA Abstract EP636 2021.

### **Differentiating Features of Zanubrutinib**

- Zanubrutinib is a second-generation BTK inhibitor
  - Zanubrutinib was designed to have greater BTK specificity than ibrutinib<sup>1</sup>
  - Zanubrutinib has exposure coverage above its IC<sub>50</sub><sup>2</sup>
  - Higher drug-concentration/IC<sub>50</sub> ratios would be expected to lead to more sustained and complete BTK inhibition to improve efficacy<sup>2</sup>
- Zanubrutinib has demonstrated superior PFS by IRC over chemoimmunotherapy in treatment-naive CLL/SLL patients without del(17p)<sup>3</sup>

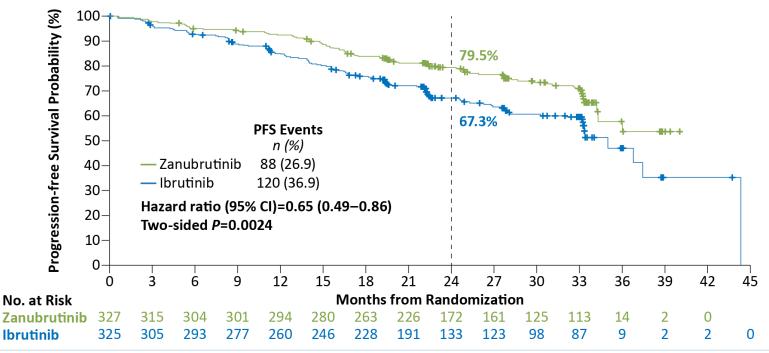


Figure modified from Ou YC, Tang Z, Novotny W, et al. *Leukemia* & *Lymphoma.* 2021; 62(11):2612-2624.

# **ALPINE Study Design**



Primary Endpoint: ORR (PR+CR) noninferiority and superiority (by investigator)
Key Secondary Endpoints: PFS and incidence of atrial fibrillation
Other Secondary Endpoints: DoR, OS, time to treatment failure, PR-L or higher, PROs, and safety

## **Patient Disposition**

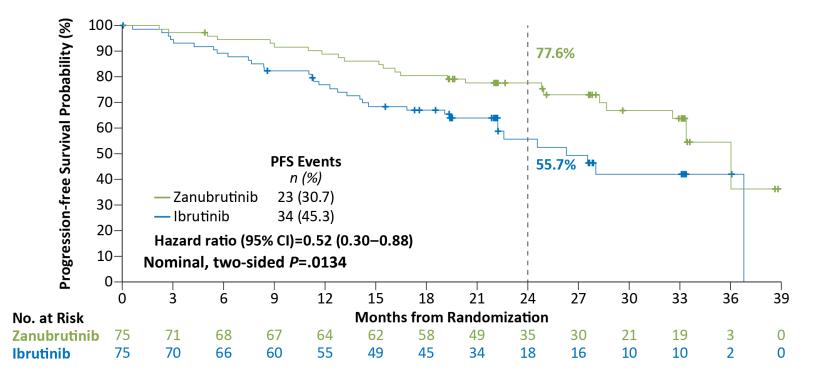



### **Balanced Demographics and Disease Characteristics**

|                                                    | Zanubrutinib<br>(n=327) | lbrutinib<br>(n=325) |
|----------------------------------------------------|-------------------------|----------------------|
| Age, median (range)                                | 67 (35-90)              | 68 (35-89)           |
| ≥65 years, n (%)                                   | 201 (61.5)              | 200 (61.5)           |
| Male, n (%)                                        | 213 (65.1)              | 232 (71.4)           |
| ECOG PS ≥1, n (%)                                  | 198 (60.6)              | 203 (62.5)           |
| Prior lines of systemic therapy, median (range)    | 1 (1-6)                 | 1 (1-12)             |
| >3 prior lines, n (%)                              | 24 (7.3)                | 30 (9.2)             |
| del(17p) and/or <i>TP53</i> <sup>mut</sup> , n (%) | 75 (22.9)               | 75 (23.1)            |
| del(17p)                                           | 45 (13.8)               | 50 (15.4)            |
| <i>TP53</i> <sup>mut</sup> without del(17p)        | 30 (9.2)                | 25 (7.7)             |
| del(11q), n (%)                                    | 91 (27.8)               | 88 (27.1)            |
| IGHV mutational status, n (%)                      |                         |                      |
| Mutated                                            | 79 (24.2)               | 70 (21.5)            |
| Unmutated                                          | 239 (73.1)              | 239 (73.5)           |
| Complex karyotype <sup>a</sup>                     | 56 (17.1)               | 70 (21.5)            |
| Bulky disease (≥5 cm), n (%)                       | 145 (44.3)              | 149 (45.8)           |

## Zanubrutinib PFS Significantly Superior to Ibrutinib

### Median study follow-up of 29.6 months



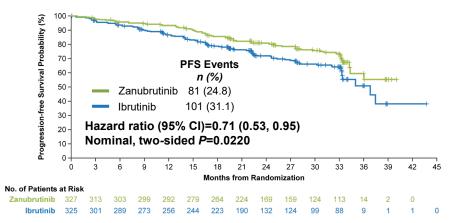

Data cutoff: 8 Aug 2022.

PFS data assessed by IRC.

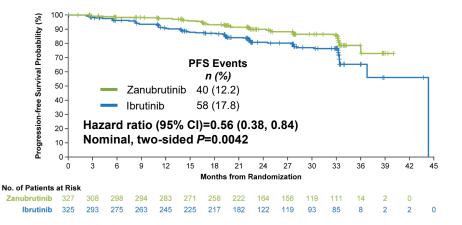
Brown JR, Eichhorst E, Hillmen P, et al. N Engl J Med. 2023;388(4):319-332.

### Zanubrutinib Improved PFS in Patients with del(17p)/TP53<sup>mut</sup>

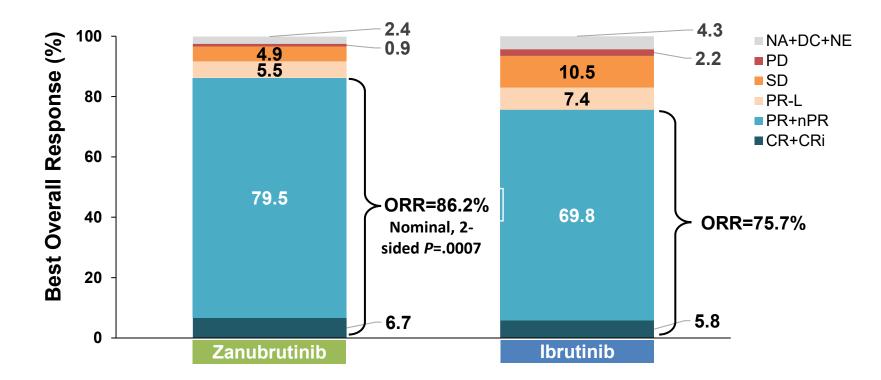



### **PFS Favored Zanubrutinib Across Subgroups**

| Subgroup                                               | Zanubrutinil    |         |                  | Ratio (95% CI)ª   |
|--------------------------------------------------------|-----------------|---------|------------------|-------------------|
|                                                        | Events/Patients |         | ITT: 0.65        |                   |
| Age group                                              |                 |         |                  |                   |
| <65 years                                              | 23/126          | 43/125  | H <b>●</b> →     | 0 42 (0.25, 0.70) |
| ≥65 years                                              | 65/201          | 77/200  |                  | 0.78 (0.56, 1.09) |
| Sex                                                    |                 |         |                  |                   |
| Male                                                   | 59/213          | 91/232  | H <b>•</b> -1    | 0.61 (0.44, 0.84) |
| Female                                                 | 29/114          | 29/93   |                  | 0.72 (0.43, 1.21) |
| Prior lines of therapy                                 |                 |         |                  |                   |
| 1–3                                                    | 80/303          | 102/295 | H <del>i</del>   | 0.67 (0.50, 0.90) |
| >3                                                     | 8/24            | 18/30   | <b>⊢●</b>        | 0.45 (0.19, 1.04) |
| Baseline <i>del</i> (17p)/ <i>TP53</i> mutation status |                 |         |                  |                   |
| Present                                                | 23/75           | 34/75   |                  | 0.52 (0.30, 0.88) |
| Absent                                                 | 65/251          | 86/250  | <b>⊢●</b> −1     | 0.67 (0.49, 0.93) |
| Baseline IGHV mutation status                          |                 |         |                  |                   |
| Unmutated                                              | 72/239          | 98/239  | H <del>İ</del> H | 0.64 (0.47, 0.87) |
| Mutated                                                | 15/79           | 18/70   |                  | 0.63 (0.32, 1.26) |
| Complex karyotype                                      |                 |         |                  |                   |
| Yes                                                    | 20/56           | 24/70   |                  | 0.91 (0.50, 1.66) |
| No                                                     | 37/153          | 45/130  | <b>⊢</b> ●−−1    | 0.58 (0.37, 0.90) |
| 0.1 0.50 1.00 1.50 2.00                                |                 |         |                  |                   |
|                                                        |                 |         |                  |                   |
| Favors Zanubrutinib Favors Ibrutinib                   |                 |         |                  |                   |


Data cutoff: 8 Aug 2022. <sup>a</sup>Hazard ratio and 95% CI were unstratified for subgroups. Brown JR, Eichhorst E, Hillmen P, et al. *N Engl J Med*. 2023;388(4):319-332.

# Sensitivity Analyses Are Consistent with Primary PFS Analysis, Including Drug Interruptions and Treatment Discontinuation


#### Drug Interruptions<sup>1,2</sup>



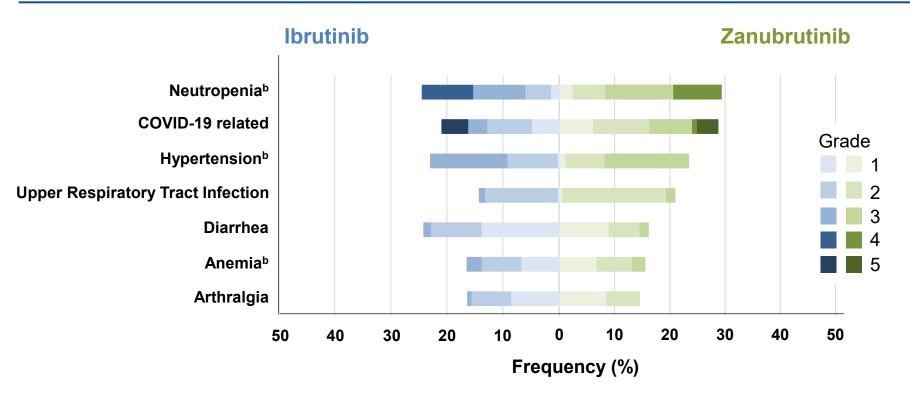
#### **Treatment Discontinuation<sup>2</sup>**



### Zanubrutinib Showed Higher ORR Assessed by IRC



Data cutoff: 8 Aug 2022.


CR, complete response; CRi, complete response with incomplete bone marrow recovery; nPR, nodular partial response; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable response; PD, progressive disease; NA, not assessed; DC, discontinued prior to first assessment; NE, not evaluable.

# **Overall Safety/Tolerability Summary**

### Zanubrutinib safety profile was favorable to ibrutinib

|                                   | Zanubrutinib<br>(n=324) | lbrutinib<br>(n=324) |  |  |  |
|-----------------------------------|-------------------------|----------------------|--|--|--|
| Median treatment duration, months | 28.4                    | 24.3                 |  |  |  |
| Any grade adverse event           | 318 (98.1)              | 321 (99.1)           |  |  |  |
| Grade 3 to 5                      | 218 (67.3)              | 228 (70.4)           |  |  |  |
| Grade 5                           | 33 (10.2)               | 36 (11.1)            |  |  |  |
| Serious adverse event             | 136 (42.0)              | 162 (50.0)           |  |  |  |
| Adverse events leading to         |                         |                      |  |  |  |
| Dose reduction                    | 40 (12.3)               | 55 (17.0)            |  |  |  |
| Dose interruption                 | 162 (50.0)              | 184 (56.8)           |  |  |  |
| Treatment discontinuation         | 50 (15.4)               | 72 (22.2)            |  |  |  |

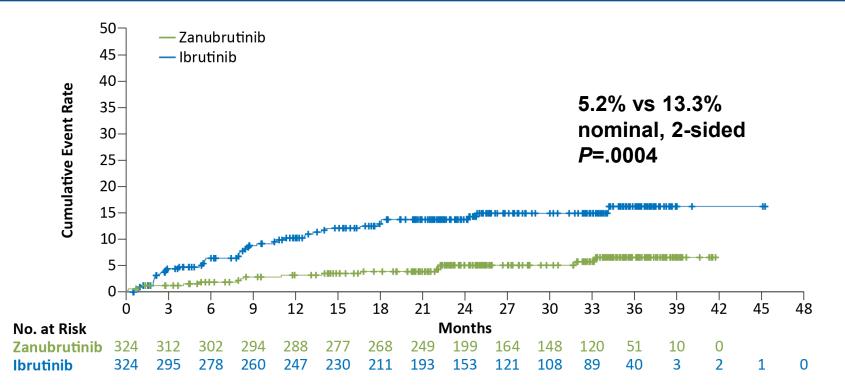
### Most Common Adverse Events<sup>a</sup>



<sup>a</sup>Adverse events occurring in ≥15% of patients in either arm. <sup>b</sup>Pooled terms.

Brown JR, Eichhorst E, Hillmen P, et al. N Engl J Med. 2023;388(4):319-332.

# Zanubrutinib Had A Favorable Cardiac Profile


# Lower rate of cardiac events, serious cardiac events, treatment discontinuation, and deaths

- Lower rate of serious cardiac adverse events reported with zanubrutinib
  - A fib/flutter (n=2)
  - MI/ACS (n=2)
  - CHF (n=2)
- Fatal cardiac events:
  - Zanubrutinib, n=0 (0%)
  - Ibrutinib, n=6 (1.9%)

| deaths                                                      | Zanubrutinib<br>(n=324) | lbrutinib<br>(n=324) |
|-------------------------------------------------------------|-------------------------|----------------------|
| Cardiac adverse events                                      | 69 (21.3%)              | 96 (29.6%)           |
| Serious cardiac adverse events                              | 6 (1.9%)                | 25 (7.7%)            |
| Cardiac adverse events leading to treatment discontinuation | 1 (0.3)                 | 14 (4.3)             |
| Ventricular extrasystoles                                   | 1 (0.3)                 | 0                    |
| Atrial fibrillation                                         | 0                       | 5 (1.5)              |
| Cardiac arrest                                              | 0                       | 2 (0.6) <sup>a</sup> |
| Cardiac failure                                             | 0                       | 2 (0.6)              |
| Cardiac failure acute                                       | 0                       | 1 (0.3) <sup>a</sup> |
| Congestive cardiomyopathy                                   | 0                       | 1 (0.3) <sup>a</sup> |
| Myocardial infarction                                       | 0                       | 1 (0.3) <sup>a</sup> |
| Palpitations                                                | 0                       | 1 (0.3)              |
| Ventricular fibrillation                                    | 0                       | 1 (0.3)              |

<sup>a</sup>Cardiac deaths. One death not listed due to myocardial infarction with ibrutinib discontinuation due to diarrhea 14 days prior to the fatal event.

### **Fewer Atrial Fibrillation/Flutter Events With Zanubrutinib**



### Conclusions

- Zanubrutinib demonstrated superior PFS over ibrutinib in patients with relapsed/refractory CLL/SLL
  - PFS benefit seen across all major subgroups, including the del(17p)/TP53<sup>mut</sup> population
- Zanubrutinib has a favorable safety profile compared with ibrutinib
  - Lower rate of grade ≥3 and serious AEs, fewer AEs leading to treatment discontinuation and dose reduction
  - Zanubrutinib has a better cardiac profile than ibrutinib with lower rates of atrial fibrillation, serious cardiac events, cardiac events leading to treatment discontinuation, and fatal cardiac events
- ALPINE is the first study to demonstrate PFS superiority in a head-to-head comparison of BTK inhibitors in patients with relapsed/refractory CLL/SLL;
   zanubrutinib has now proven superiority to ibrutinib in both PFS and ORR

### Acknowledgements

- The authors would like to thank our independent data monitoring committee members for their efforts in this study
- Additionally, we would like to thank the BeiGene ALPINE study team for all their efforts and hard work
- Under the direction of the authors, medical writing and editorial support was provided by Regina Switzer, PhD and Elizabeth Hermans, PhD. Logistical support, funded by BeiGene, was provided by Bio Connections LLC
- Previously presented at the 2022 American Society of Hematology (ASH) Annual Meeting

#### **Corresponding Author:**

Emmanuelle Ferrant, MD, e-mail: emmanuelle.ferrant2@chu-lyon.fr