

Safety/tolerability and preliminary antitumor activity of sitravatinib plus tislelizumab in patients with advanced platinum-resistant ovarian cancer (PROC)

Dr. Jeffrey C. Goh,¹

On behalf of Jermaine Coward,¹ Bo Gao,² Ines Pires da Silva,³ Mark Voskoboynik,⁴ Daphne Day,⁵ Amy Louise Body,⁵ Hui K. Gan,⁶ Cheng Chen,⁷ Xiao Xiang,⁷ Cong Fei,⁷ Liu Yang,⁷ Michael Millward⁸

¹Icon Cancer Centre, Brisbane, Australia; ²Blacktown Cancer and Hematology Centre, Blacktown, NSW, Australia; ³Blacktown and Westmead Hospitals, Sydney, Australia; ⁴Nucleus Network, Melbourne, Australia and Central Clinical School, Monash University, Melbourne, Australia; ⁵Monash Health and Monash University, Melbourne, Australia; ⁶Austin Health, Heidelberg, VIC, Australia; ⁷BeiGene (Beijing) Co., Ltd., Beijing, China; ⁸Linear Clinical Research & University of Western Australia, Nedlands, Australia

FINDING CURES TOGETHER*

Jeffery Goh

I have the following financial relationships to disclose:

Consultant for: MSD, AstraZeneca, BMS, GSK Speaker's Bureau for: MSD, AstraZeneca, BMS, Ipsen, GSK Grant/Research support from: nil relevant for this study Stockholder in: ICON Cancer Centres Employee of: Queensland Health (part-time) and Jeffrey Goh Pty Ltd.

The study was funded by BeiGene, Ltd. Medical writing support for the development of this presentation, under the direction of the authors, was provided by Louise Oakes, PhD, of Ashfield MedComms, an Ashfield Health company, and funded by BeiGene, Ltd.

Background

AACR American Association for Cancer Research*

- The 1L standard of care for OC is platinum-based chemotherapy ± bevacizumab¹
- Disease recurrence is frequent and almost all patients become refractory or resistant to platinum-based therapy²
- Based on several Phase 1/2 studies, the efficacy of anti-PD-1/PD-L1 immune checkpoint inhibitors remains limited as a monotherapy in heavily pre-treated patients with OC, generally producing ORRs of ~10–15%^{3–6}
- Tislelizumab is an anti-PD-1 antibody engineered to minimize FcvR binding on macrophages in order to abrogate antibody-dependent phagocytosis, a mechanism of T-cell clearance and potential anti-PD-1 resistance^{7–9}

Tislelizumab MoA

1L, first-line; Ab, antibody; mAb, monoclonal antibody; MHC, major histocompatibility complex; MoA, mechanism of action; OC, ovarian cancer; ORR, objective response rate; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1 1.Hodi FS, et al. N Engl J Med 2010;363:711–23; 2. Robert C, et al. N Engl J Med 2015;372:2521–32; 3. Larkin J, et al. N Engl J Med 2015;373:23–34; 4. Gide TN, et al. Clin Can Res 2018;24:1260–70 5. Le Saux O, et al. Bull Can 2020;107:465–73; 6.Demircan NC, et al. Ann Transl Med 2020;8:1714; 7. Zhang T, et al. Cancer Immunol Immunother 2018;67:1079–90; 8. Dahan R, et al. Cancer Cell 2015;28:285–95 9. Qin S, et al. Future Oncol 2019 15:1811–22

AACR ANNUAL MEETING 2021: APRIL 10-15, 2021 AND MAY 17-21, 2021

PD-1 PD-1 PD-1 FcyR-null Ab (Tisfelizumab) FcyR-null Ab FcyR-null Ab (Tisfelizumab) FcyR-null Ab

Background

- Sitravatinib is an oral spectrum-selective TKI targeting TAM (TYRO3, AXL,MER) and split (VEGFR2/KIT) receptors¹
- Inhibition of these receptors reduces the number of MDSCs and regulatory T cells, while increasing the ratio of M1/M2-polarized macrophages, which may overcome an immunosuppressive tumor microenvironment and augment antitumor immune responses¹
- Combining a PD-1 inhibitor and an agent with immune modulatory and antitumor properties may enhance antitumor activity of either agent²

 Here, we present data from the Phase 1b study (NCT03666143) of tislelizumab in combination with sitravatinib in patients with anti-PD-1/PD-L1 antibody naïve recurrent PROC

iDC, induced dendritic cell; mDC, myeloid dendritic cell; MDSCs, myeloid-derived suppressor cells; NK, natural killer; PROC, platinum-resistant ovarian cancer; TKI, tyrosine kinase inhibitor; Treg, regulatory T-cell 1. Du W, et al. JCI Insight 2018;3:e124184; 2. Demircan NC, et al. Ann Transl Med 2020;8:1714

Study design

FINDING CURES TOGETHER*

Eligibility criteria: ■ Age ≥18 years old	Cohort E: Anti-PD-1/PD-L1 Ab naïve recurrent platinum-resistant OC (PROC, defined as relapse 1–6 months after last dose of platinum-based treatment)	-	•	Progressive disease
 Histologically or cytologically 	Isielizumab 200 mg IV Q3W + sitravatinib 120 mg PO QD N = 20 for all cohorts		-	Unacceptable toxicity
confirmed advanced	Cohort A: Nsq NSCLC; Anti-PD-1/PD-L1 Ab R/R		-	Death
unresectable solid tumors	Cohort B: Nsq NSCLC; Anti-PD-1/PD-L1 Ab naive Cohort C: RCC; Anti-PD-1/PD-L1 Ab R/R Cohort D: (China): RCC; Metastatic/advanced without prior systemic therapy		•	Withdrawal of consent
ECOG PS 0,1	Cohort F: Sq NSCLC; Anti-PD-1/PD-L1 Ab treated metastatic		-	Study
 Adequate organ function 	Conort G: Melanoma; Anti-PD-1/PD-L1 R/R Ab Unresectable or metastatic Cohort H: Nsq NSCLC; Treatment-naïve, metastatic, positive (≥1%) PD-L1 Cohort I: Sq NSCLC; Treatment-naïve, metastatic, positive (≥1%) PD-L1			termination by sponsor

Key eligibility for Cohort E PROC (N = 60):

- No platinum-refractory disease (PD <1 month of last dose of platinum-based chemotherapy)
- No prior exposure to anti-PD-1/PD-L1 agent

Data cut-off 13 Oct 2020

Key Endpoints:

- **Primary**: Safety and tolerability
- Secondary: Antitumor activity
- Exploratory: PK and immunogenicity, potential pharmacodynamic biomarkers, retrospective analysis of PD-L1 expression

ECOG PS, Eastern Cooperative Oncology Group performance status; IV, intravenously; NSCLC, non-small cell lung cancer; NSq, non-squamous; PD, progressive disease; PK, pharmacokinetic; PO, orally; PROC, platinum resistant ovarian cancer; QD, once-daily; Q3W, once every three weeks; RCC, renal cell carcinoma; R/R, resistant/refractory; Sq, squamous

Patient disposition- cohort E

AE, adverse event; PD, progressive disease

Baseline characteristics

FINDING CURES TOGETHER*

Baseline characteristics		PROC (N = 60)	Baseline characteristics	PROC (N = 60)			
Age, years	Median (range)	64 (26–80)	Type of prior systemic therapy, n (%)	Metastatic	50 (83)		
Race n (%)	Asian	9 (15)	······································	Adjuvant	40 (67)		
1400, 11 (70)	White	40 (00)		Neo-adjuvant	21 (35)		
	writte	40 (00)	40 (00)		11 (18)		
	Other	3 (5)		Metastatic and locally	0 (10)		
ECOG PS, n (%)	0	26 (43)		advanced	ь (10)		
	1	34 (57)	Prior bevacizumab	Yes	21 (35)		
Primary location, n (%)	Ovary	44 (73)	treatment, n (%)	No	39 (65)		
	Fallopian tube	7 (12)	Duration of last therapy,	Median (range)	4		
	Peritoneum	5 (8)	months		(0–57)		
	Other	4 (7)	PD-L1 expression	≥1%	20 (33)		
Epithelial type n (%)	Serous	57 (95)		<1%	29 (48)		
	Musingua	1 (2)		Not available	11 (19)		
		I (Z)	PD-L1 expression	≥10%	26 (43)		
	Endometrioid	1 (2)	(Immune Cell, IC), n (%)	~10%	23 (38)		
	Clear cell	1 (2)			23 (30)		
Number of prior	Median (range)	4		Not available	11 (19)		
regimens	(1–11)		PD-L1 membrane staining on tumor cells and immune cells was assessed by the VENTANA PD-L1 (SP263) as				

Event, n (%)	PROC N = 60
Patients with at least one TEAE	58 (97)
Treatment-related	55 (92)
Grade ≥3 TEAE	41 (68)
Treatment-related	24 (40)
Serious TEAE	42 (70)
Treatment-related	17 (28)
TEAE leading to death	4 (7)
Treatment-related	0 (0)
TEAE leading to tislelizumab discontinuation	9 (15)
Treatment-related	7 (12)
TEAE leading to sitravatinib discontinuation	14 (23)
Treatment-related	12 (20)

PROC, platinum resistant ovarian cancer; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event

*Dose delay was defined as drug is withheld beyond the visit window. Dose interruption was defined as an interruption of the infusion.†Due to an infusion related reaction (muscle spasms of the lower back)

All Grade and Grade ≥3 TEAEs

FINDING CURES TOGETHER*

All Grade with a frequency	y of ≥20%	Grade ≥3 with a fr	Grade ≥3 with a frequency of ≥5%			
Event, n (%)	All Grades N = 60	Event, n (%)	≥Grade 3 N = 60			
Diarrhea	40 (67)	Hypertension	11 (18)			
Nausea	34 (57)	Abdominal pain	7 (12)			
Fatigue	29 (48)	Increased ALT	4 (7)			
Hypertension	24 (40)	Diarrhea	4 (7)			
Decreased appetite	22 (37)	Dyspnea	4 (7)			
Vomiting	22 (37)	Fatigue	4 (7)			
Abdominal pain	21 (35)	Anemia	3 (5)			
Constipation	20 (33)	Intestinal obstruction	3 (5)			
Increase ALT	18 (30)	Pain	3 (5)			
Urinary tract infection	16 (27)	Small intestinal obstruction	3 (5)			
Increase AST	12 (20)	Vomiting	3 (5)			
Dysphonia	12 (20)					
Headache 12 (20)		Hypertension (18%), and	l abdominal pain (12%)			
Palmar-plantar erythrodysaesthesia syndrome 12 (20)		were the most commonly reported Grade ≥3 TEAEs				

ALT, Alanine transaminase; AST, Aspartate aminotransferase

Clinical efficacy

Clinical activity	Efficacy evaluable (n = 53)
ORR, % (95% CI)	26 (15.3–40.3)
Best overall response, n (%)	
Complete response	0 (0)
Partial response	14 (26)
Stable disease	27 (51)
Progressive disease	9 (17)
NE*	3 (6)
DCR, % (95% CI)	77 (63.8–87.7)
Median DoR, months (95% CI)	4.7 (2.83–NE)

*Death or clinical progression before first tumor assessment

DCR, disease control rate; DoR, duration of response; NE, non-evaluable, ORR, objective response rate

Maximum change in target lesion from baseline

AMERICAN AMERICAN ASSOCIATION for Cancer Research

FINDING CURES TOGETHER*

*One patient had disease progression due to new lesion and target lesion was not evaluated PD, progressive disease; PR, partial response; SD, stable disease

ORR subgroup analysis

FINDING CURES TOGETHER*

	CR	PR	SD	PD	NE	N	Response	ORR (Exact 95% CI)				1		
Age <65 ≥65	0 (0.0) 0 (0.0)	7 (25.9) 7 (26.9)	12 (44.4) 15 (57.7)	5 (15.5) 4 (15.4)	3 (11.1) 0 (0.0)	27 26	7 7	25.9 (11.11, 46.28) 26.9 (11.57, 47.79)	=					
Race Asian White Other	0 (0.0) 0 (0.0) 0 (0.0)	3 (37.5) 10 (23.8) 1 (33.3)	4 (50.0) 22 (52.4) 1 (33.3)	1 (12.5) 8 (19.0) 0 (0.0)	0 (0.0) 2 (4.8) 1 (33.3)	8 42 3	3 10 1	37.5 (8.52, 75.51) 23.8 (12.05, 39.45) 33.3 (0.84, 90.57)					-	_
Baseline ECOG 0 1	0 (0.0) 0 (0.0)	9 (39.1) 5 (16.7)	9 (39.1) 18 (60.0)	4 (17.4) 5 (16.7)	1 (4.3) 2 (6.7)	23 30	9 5	39.1 (19.71, 61.46) 16.7 (5.64, 34.72)			-			
Last line of prior therapy category ≤3 ≥4 NA	0 (0.0) 0 (0.0) 0 (0.0)	8 (34.8) 5 (17.2) 1 (100.0)	7 (30.4) 20 (69.0) 0 (0.0)	6 (26.1) 3 (10.3) 0 (0.0)	2 (8.7) 1 (3.4) 0 (0.0)	23 29 1	8 5 1	34.8 (16.38, 57.27) 17.2 (5.85, 35.77) 100.0 (2.50, 100.0)						
PD-L1 expression level of TC 1% <1% ≥1% NA	0 (0.0) 0 (0.0) 0 (0.0)	8 (27.6) 6 (35.3) 0 (0.0)	18 (62.1) 6 (35.3) 3 (42.9)	1 (3.4) 5 (29.4) 3 (42.9)	2 (6.9) 0 (0.0) 1 (14.3)	29 17 7	8 6 0	27.6 (12.73, 47.24) 35.3 (14.21, 61.67) 0.0 (0.00, 40.96)						
PD-L1 expression level of IC 10% <10 % ≥10 % NA	0 (0.0) 0 (0.0) 0 (0.0)	6 (26.1) 8 (34.8) 0 (0.0)	13 (56.5) 11 (47.8) 3 (42.9)	3 (13.0) 3 (13.0) 3 (42.9)	1 (4.3) 1 (4.3) 1 (14.3)	23 23 7	6 8 0	26.1 (10.23, 48.41) 34.8 (16.38, 57.27) 0.0 (0.00, 40.96)		1 20	40	- 60	80	100%

BOR per RECIST V 1.1, n (%)

BOR, best overall response; CR, complete response; ECOG, Eastern Cooperative Oncology Group; IC, immune cell; NA, not available; NE, non-evaluable; ORR, objective response rate, PD, progressive disease; PR, partial response; TC, tumor cell

Clinical efficacy

OS

FINDING CURES TOGETHER*

PFS

OC, ovarian cancer; OS, overall survival; PFS, progression-free survival

PFS and OS according to PD-L1 expression (TC 1%)

FINDING CURES TOGETHER*

AMERICAN AMERICAN ASSOCIATION for Cancer Research

NA, not available; NE, non-evaluable; OS, overall survival; PFS, progression-free survival; TC, tumor cell

PFS and OS according to PD-L1 expression (IC 10%)

FINDING CURES TOGETHER*

AMERICAN AMERICAN ASSOCIATION for Cancer Research

IC, immune cell; NA, not available; NE, non-evaluable; OS, overall survival; PFS, progression-free survival

Plasma VEGF and serum IP-10 increased after treatment

AMER American Association for Cancer Research*

Fold change of plasma VEGF and serum IP-10 after tislelizumab and sitravatinib combination treatment

P value is determined by one sample Wilcoxon sign rank test on the fold change

C1D1: Cycle 1 Day 1 predose, 21 days per cycle; C2D1: Cycle 2 Day 1 predose; C3D1: Cycle 3 Day 1 predose

Conclusions

