First Interim Analysis of ALPINE Study: Results of a Phase 3 Randomized Study of Zanubrutinib vs Ibrutinib in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

Author(s): Peter Hillmen, MBChB, PhD1, Barbara Eichhorst, MD2, Jennifer R. Brown, MD, PhD2, Nicole Lamanna, MD3, Susan O'Brien, MD5, Constantine S. Tam, MBBS, MD4,6,7,8,9, Lugui Qiu, MD, MD10, Maciej Kazmierczak, MD, PhD11, Keshu Zhou, MD, PhD12, Martin Šimkoň, MD, PhD13,14, Jiri Mayer, MD15, Amanda Gillespie - Twardy, MD16, Mazayar Shadman, MD, MPH17,18, Alessandra Ferrajoli, MD19, Peter S. Ganly, MBMBCh, PhD20,21, Robert Weinkove, MBBS, PhD22,23, Tommi Salmi, MD24, Meng Ji, MD24, Jessica Yecies, PhD24, Kenneth Wu, PhD24, William Novotny, MD24, Jane Huang, MD24, Wojciech Jurczak, MD, PhD25

Affiliations: 1St James’s University Hospital, Leeds, United Kingdom; 2Department of Internal Medicine, University of Cologne, Cologne, Germany; 3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; 4Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; 5Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; 6Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; 7University of Melbourne, Parkville, Victoria, Australia; 8St Vincent’s Hospital, Fitzroy, Victoria, Australia; 9Royal Melbourne Hospital, Parkville, Victoria, Australia; 10Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China; 11Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland; 12Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; 134th Department of Internal Medicine - Hematology, University Hospital, Hradec Kralove, Czech Republic; 14Faculty of Medicine, Charles University, Prague, Czech Republic; 15Department of Internal Medicine-Hematology and Oncology, Masaryk University and University Hospital, Brno, Czech Republic; 16Blue Ridge Cancer Care, Roanoke, VA, USA; 17Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 18Department of Medicine, University of Washington, Seattle, WA, USA; 19Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 20Department of Haematology, Christchurch Hospital, Christchurch, New Zealand; 21Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; 22Wellington Blood and Cancer Centre, Capital and Coast District Health Board, Wellington, New Zealand; 23Malaghan Institute of Medical Research, Wellington, New Zealand; 24BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene USA, Inc., San Mateo, CA, USA; 25Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland

Abstract Content: Treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) has been transformed with inhibitors of B-cell receptor signaling, such as Bruton tyrosine kinase (BTK) inhibitors. The first-generation BTK inhibitor ibrutinib is a standard of care in CLL/SLL. Zanubrutinib is an irreversible next-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target inhibition. It was hypothesized that the increased specificity of zanubrutinib may minimize toxicities related to ibrutinib off-target inhibition and that more complete and sustained BTK occupancy may improve efficacy outcomes. Activity and tolerability of zanubrutinib in patients with CLL/SLL has been demonstrated in early phase trials. ALPINE (BGB-3111-305; NCT03734016) is a global, randomized, phase 3 study comparing zanubrutinib vs ibrutinib in patients with relapsed/refractory (R/R) CLL/SLL. Here we present the results of a pre-planned interim analysis scheduled approximately 12 mo after the first 415 out of 652 patients were enrolled.

Patients with R/R CLL/SLL were randomly assigned 1:1 to receive zanubrutinib 160 mg twice daily or ibrutinib 420 mg once daily until disease progression. Randomization was stratified by age (<65 years vs ≥65 years), geographic region, refractory status, and del17p/TP53 mutation status. The primary end point was overall response rate (ORR) as determined by investigators using the 2008 International Workshop on CLL guidelines and the Lugano criteria for CLL/SLL. Sample size was calculated to provide 90% power to demonstrate non-inferiority of zanubrutinib to ibrutinib as determined by investigators using the 2008 International Workshop on CLL guidelines and the Lugano criteria for CLL/SLL. Here we present the results of a pre-planned interim analysis scheduled approximately 12 mo after the first 415 out of 652 patients were enrolled.

Between 5 Nov 2018 and 20 Dec 2019, 415 patients were randomized. Treatment groups were well balanced for demographic and disease characteristics: age ≥65 years 62.3% vs 61.5%, male 68.6% vs 75%, >3 prior lines of therapy 7.3% vs 10.1%, del17p 11.6% vs 12.5%, TP53 mutated without del17p 8.2% vs 5.8%, in zanubrutinib and ibrutinib arms, respectively. At a median follow-up of 15 mo, ORR was significantly higher with zanubrutinib vs ibrutinib (78.3% vs 62.5%, 2-sided \(P = .0006 \) compared with a pre-specified alpha of .0099 for interim analysis). ORR was higher in patients with del11q (83.6% vs 69.1%) and del17p (83.3% vs 53.8%) with zanubrutinib, as were overall 12-mo progression-free survival (PFS; 94.9% vs 84.0%) and overall survival rates (97.0% vs 92.7%). The rate of atrial fibrillation/flutter, a pre-specified safety endpoint, was significantly lower with zanubrutinib vs ibrutinib (2.5% vs 10.1%, 2-sided \(P = .0014 \), compared with a pre-specified alpha of .0099 for interim analysis). Rates of major bleeding (2.9% vs 3.9%), and adverse events leading to discontinuation (7.8% vs 13.0%) or death (3.9% vs 5.8%) were also lower with zanubrutinib. Rate of neutropenia was higher with zanubrutinib (28.4% vs 21.7%), while grade ≥3
Infections were lower with zanubrutinib (12.7% vs 17.9%).

In this interim analysis of a randomized, phase 3 ALPINE study in patients with R/R CLL/SLL, zanubrutinib was shown to have a superior response rate, an improved PFS, and a lower rate of atrial fibrillation/flutter compared with ibrutinib. These data support that more selective BTK inhibition, with more complete and sustained BTK occupancy, results in improved efficacy and safety outcomes.