Impact of baseline liver function on overall survival (OS) and safety in patients (pts) with unresectable hepatocellular carcinoma (HCC) treated with first-line (1L) tislelizumab (TIS): Results from the RATIONALE-301 study

Authors: Masatoshi Kudo¹, Arndt Vogel², Tim Meyer³, Frederic Boisserie⁴, Songzi Li⁵, Ramil Abdrashitov⁶, Yaxi Chen⁷, Andrew X. Zhu^{8,9}, Shukui Qin¹⁰, and Richard S. Finn¹¹

Affiliations:

¹Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan; ²Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; ³Academic Department of Oncology, Royal Free Hospital NHS Trust and University College London, London, United Kingdom;

⁴Clinical Science, BeiGene Ltd., Ridgefield Park, NJ, United States;
⁵Biometrics, BeiGene Ltd., Ridgefield Park, NJ, United States;
⁶Clinical Development, BeiGene USA, Inc., Fulton, MD, United States;
⁷Clinical Development, BeiGene (Beijing) Co., Ltd., Beijing, China;
⁸Jiahui International Cancer Center, Jiahui Health, Shanghai, China;
⁹Massachusetts General Hospital, Harvard Medical School, MA, United States;
¹⁰Cancer Center of General Hospital of Eastern Theater of PLA, Nanjing, China;
¹¹Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States

Background and aims: TIS is a monoclonal antibody with high binding affinity to programmed cell death protein 1. The phase 3 RATIONALE-301 study (NCT03412773) demonstrated non-inferior OS with TIS versus sorafenib (SOR) (median [m] OS 15.9 vs 14.1 months [mo], respectively; HR: 0.85 [95 % CI: 0.71, 1.02]) in 1L treatment of pts with unresectable HCC; OS superiority versus SOR was not met. As liver function is a known predictor of survival in pts with HCC, we evaluated baseline liver function and its impact on OS and safety in pts enrolled in RATIONALE-301.

Methods: Systemic therapy-naïve adults with histologically confirmed HCC were randomized (1:1) to receive TIS (200 mg intravenously every 3 weeks) or SOR (400 mg orally twice daily) until disease progression, intolerable toxicity, or withdrawal. The primary endpoint was OS. In this exploratory analysis, OS and safety were assessed by Child-Pugh score (CPS; 5 vs 6) and albumin-bilirubin (ALBI) grade (1 vs 2).

Results: In pts randomized to TIS (n = 342), at baseline, 76.9 % and 22.5 % had a CPS of 5 and 6, respectively, and 74.9 % and 23.7 % had an ALBI grade of 1 and 2, respectively. In pts randomized to SOR (n = 332), 74.7 % and 25.3 % had a CPS of 5 and 6, respectively, and 68.1 % and 29.5 % had an ALBI grade 1 and 2, respectively. At data cutoff (July 11, 2022; minimum study follow-up 33 mo), mOS was similar in pts treated with TIS and SOR, and numerically longer

in pts with CPS 5 vs 6, and ALBI grade 1 vs 2, regardless of treatment arm (Table). Incidence of any grade and grade ≥ 3 treatment-emergent adverse events (TEAEs) and treatment-related adverse events (TRAEs) were lower in pts treated with TIS versus SOR across CPS and ALBI grades (Table).

Conclusions: Survival was similar between arms, and TIS showed a favorable safety profile compared with SOR, regardless of CPS or ALBI grade, supporting the primary analysis. Pts with CPS 6 and ALBI grade 2 had poorer mOS than those with CPS 5 and ALBI grade 1, regardless of treatment arm, affirming that pts with better liver function have improved outcomes.

Table

	CPS 5		CPS 6		ALBI grade 1		ALBI grade 2	
Efficacy*	TIS (n = 263)	SOR (n = 248)	TIS (n = 77)	SOR (n = 84)	TIS (n = 256)	SOR (n = 226)	TIS (n = 81)	SOR (n = 98)
Median OS, mo (95 % CI)	19.5 (15.4, 23.5)	18.4 (14.5, 20.9)	8.7 (6.2, 12.3)	8.3 (5.6, 10.0)	19.9 (15.9, 24.2)	16.9 (13.7, 19.8)	9.5 (7.3, 10.8)	9.1 (6.2, 13.1)
Unstratified HR (95 % CI)	0.88 (0.71, 1.08)		0.73 (0.52, 1.03)		0.85 (0.69, 1.06)		0.83 (0.60, 1.14)	
Safety, n (%) ⁺	TIS (n = 261)	SOR (n = 243)	TIS (n = 75)	SOR (n = 81)	TIS (n = 256)	SOR (n = 226)	TIS (n = 81)	SOR (n = 98)
TEAE any grade	251 (96.2)	243 (100)	72 (96.0)	81 (100)	244 (95.3)	226 (100)	80 (98.8)	98 (100)
TEAE grade ≥ 3	120 (46.0)	155 (63.8)	42 (56.0)	57 (70.4)	113 (44.1)	145 (64.2)	49 (60.5)	67 (68.4)
TRAE any grade	194 (74.3)	238 (97.9)	63 (84.0)	73 (90.1)	194 (75.8)	218 (96.5)	65 (80.2)	93 (94.9)
TRAE grade ≥ 3	56 (21.5)	131 (53.9)	18 (24.0)	42 (51.9)	46 (18.0)	121 (53.5)	29 (35.8)	52 (53.1)
*Efficacy analysis set; [†] Safety analysis set.								