Long-Term Follow-up of a Phase 2 Study of Tislelizumab Monotherapy in Patients With Previously Treated, Locally Advanced, Unresectable or Metastatic Microsatellite Instability-High or Mismatch Repair-Deficient Solid Tumors

Jian Li,¹ Ye Xu,² Aimin Zang,³ Yunong Gao,⁴ Quanli Gao,^{5*} Yanqiao Zhang,⁶ Dong Wang,⁷ Jianming Xu,⁸ Ying Yuan,⁹ Haiping Jiang,¹⁰ Jieer Ying,¹¹ Chunmei Shi,¹² Yanhong Deng,¹³ Jing Wang,¹⁴ Tianshu Liu,¹⁵ Yi Huang,¹⁶ Mengyue Shi,¹⁷ Ke Wang,¹⁸ Han Hu,¹⁸ Lin Shen¹

FPN: 1057P presented at ESMO, Madrid, Spain, October 20-24, 2023

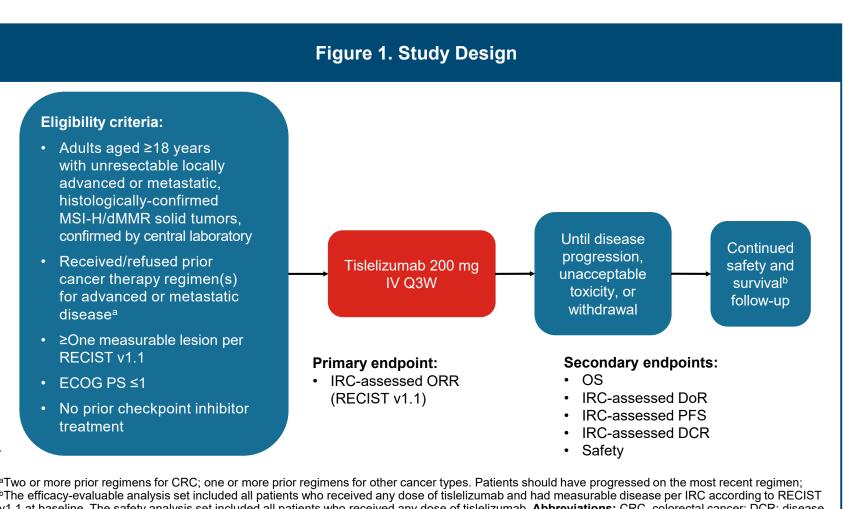
¹Peking University Cancer Hospital and Institute, Beijing, China; ²Fudan University Shanghai Cancer Hospital, Henan, China; ³Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁴Beijing Cancer Hospital, Beijing, China; ⁵Henan Cancer Hospital, Henan, China; ⁶Affiliated Cancer Hospital, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Hospital of Hebei University, Hebei, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harbin, China; ⁶Affiliated Cancer Hospital of Harbin Medical University, Harb ⁸The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China; ⁹The Second Affiliated Hospital of The University of Chinese Academy of Sciences, Beijing, China; ¹⁰First Affiliated Hospital of Zhejiang University Union Hospital, Fujian, China; Ohina; 13The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; 14Hunan Cancer Hospital, Hunan, China; 15Zhongshan Hospital, Hubei, China; 16Hubei Cancer Hospital, Hubei, China; 17BeiGene (Shanghai, China; 18BeiGene (Beijing) Co., Ltd., Beijing, China. *Presenting author.

With a longer median follow-up time of 28.9 months, updated analysis showed that tislelizumab monotherapy continued to demonstrate clinically meaningful and durable benefits in Chinese patients with previously treated, advanced microsatellite instability-high or mismatch repair-deficient (MSI-H/dMMR) solid tumors.

Tislelizumab was well tolerated in the longer-term follow-up analysis, with no new safety signals identified. The updated data from the RATIONALE-209 study further support the clinical benefit of tislelizumab in this MSI-H/dMMR biomarker-defined population.

Background

MSI-H/dMMR tumors are a unique group of tumors with a common defect in MMR activity¹ and share histopathologic characteristics that render them susceptible to immune checkpoint inhibitors, such as anti-programmed cell death protein 1 (PD-1) antibodies.^{1,2} Tislelizumab is an anti-PD-1 monoclonal antibody engineered to minimize Fcy receptor binding on macrophages.³


Primary results of the phase 2 RATIONALE-209 study showed that tislelizumab was generally well tolerated and demonstrated a clinically meaningful objective response rate (ORR) in patients with previously treated, locally advanced or metastatic MSI-H/dMMR solid tumors.⁴ Here we report the updated analysis of the phase 2 RATIONALE-209 study in Chinese patients with advanced MSI-H/dMMR solid tumors (NCT03736889) with longer follow-up.

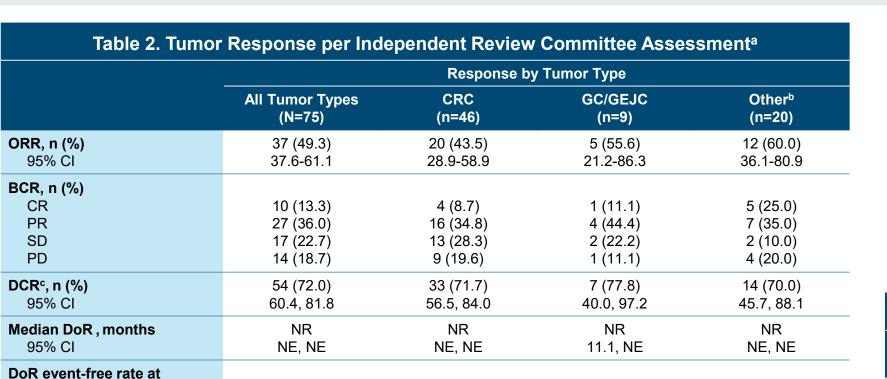
100.0, 100.0

Methods

 RATIONALE-209 is a single-arm, open-label, multicenter, phase 2 study evaluating the efficacy and safety of tislelizumab in Chinese patients with MSI-H/dMMR solid tumors (Figure 1)

v1.1 at baseline. The safety analysis set included all patients who received any dose of tislelizumab. Abbreviations: CRC, colorectal cancer; DCR; disease control rate: DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; IRC, independent review committee; IV, intravenously; MSI-H/dMMR, microsatellite instability-high or mismatch repair-deficient; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

Results

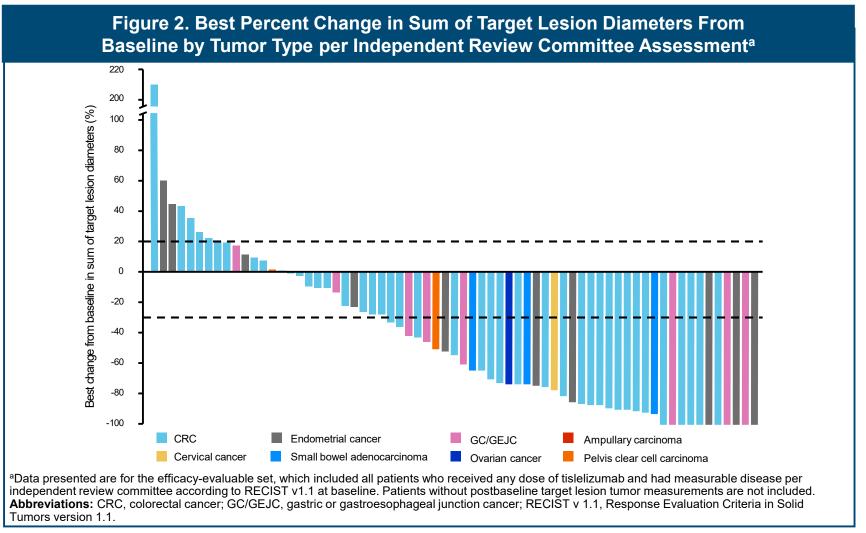

Baseline Characteristics

- Of 80 patients treated, 75 had measurable disease at baseline and were included in the efficacy-evaluable (EE) set; baseline characteristics are presented in Table 1
- At data cutoff (December 5, 2022), median study follow-up in the EE set was 28.9 months (range: 0.8-50.5)

Characteristics	All Patients (N=80)
Median age, years (range)	53 (19-81)
Age <65 years, n (%)	67 (83.8)
Male sex, n (%)	43 (53.8)
Eastern Cooperative Oncology Group performance status, n (%)	
0	35 (43.8)
1	45 (56.3)
Tumor type, n (%)	
Colorectal cancer	49 (61.3)
Endometrial cancer	15 (18.8)
Gastric or gastroesophageal junction cancer	9 (11.3)
Small bowel adenocarcinoma	3 (3.8)
Ampullary carcinoma	1 (1.3)
Cervical cancer	1 (1.3)
Ovarian cancer	1 (1.3)
Pelvis clear cell carcinoma	1 (1.3)
Disease status at study entry, n (%)	
Locally advanced	1 (1.3)
Metastatic	79 (98.8)
Prior anticancer therapy, n (%)	79 (98.8)
Prior chemoradiation	6 (7.5)
Prior therapies for locally advanced/metastatic disease, n (%)	
None	1 (1.3)
1 line	43 (53.8)
2 lines	24 (30.0)
≥3 lines	12 (15.0)

Efficacy Results

- Independent review committee (IRC)-assessed ORR in the EE set (n=75) was 49.3% (95% confidence interval [CI]: 37.6, 61.1), including 10 patients with complete response (13.3%); ORR was 45.9% (95% CI: 34.3, 57.9) in the EE set at the primary analysis
- No significant difference in ORR was observed between programmed death-ligand 1 (PD-L1)-positive and -negative subgroups (PD-L1 positivity was defined as positive staining of ≥1% of tumor cells or ≥5% of the tumor area covered by tumor-associated immune cells with positive staining)
- IRC-assessed tumor responses by tumor type are reported in **Table 2**
- The majority of patients in the EE set experienced tumor shrinkage during the study (Figure 2)
- Median progression-free survival (PFS) and overall survival (OS) were not reached; at 24 months, the PFS rate in the EE set was 56.7% (95% CI: 44.1, 67.4), and the OS rate in the safety analysis set was 68.6% (95% CI: 56.6, 77.9)



^aData presented are for the efficacy-evaluable set, which included all patients who received any dose of tislelizumab and had measurable disease per ndependent review committee according to RECIST v1.1 at baseline. Patients without postbaseline target lesion tumor measurements are not include bOther tumors include small bowel carcinoma, ampullary carcinoma, cervical cancer, ovarian cancer, and pelvis clear cell carcinoma; bCR is CR + PR + SD. Abbreviations: BCR, best confirmed response; CI, confidence interval; CR, complete response; CRC, colorectal cancer; DCR, disease control rate; DoR, duration of response; GC/GEJC, gastric or gastroesophageal junction cancer; NE, not estimable; NR, not reached; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1; SD, stable disease.

80.4, 99.6

100.0, 100.0

12.8, 96.1

Safety Analysis

- In the safety analysis set (n=80), median duration of exposure was 22.5 months (range: 0.7-50.5); median number of treatment cycles was 25.0 (range: 1-60); 43 patients (53.8%) received ≥12 months of treatment
- All patients had one or more treatment-emergent adverse event (TEAE); grade ≥3 TEAEs and treatment-related adverse events (TRAEs) were reported in 48 (60.0%) and 43 patients (53.8%), respectively (**Table 3**)
- Six patients (7.5%) discontinued treatment due to TRAEs; TRAEs leading to death occurred in three patients (3.8%) (**Table 3**)
- TRAEs that occurred in ≥15% of patients are reported in Table 4

Table 3.	Table 3. Safety Summary ^a			
	All Patients (N=80)			
Patients, n (%)	TEAE	TRAE		
Any adverse event	80 (100.0)	79 (98.8)		
Grade ≥3 adverse event	48 (60.0)	43 (53.8)		
Serious adverse event	31 (38.8)	24 (30.0)		
Leading to death ^b	5 (6.3)	3 (3.8)		
Leading to treatment discontinuation ^c	6 (7.5)	6 (7.5)		
Leading to treatment modificationd	38 (47.5)	32 (40.0)		

aData presented are for the safety analysis set, which included all patients who received any dose of tislelizumab; bAdverse events leading to death included multiple organ dysfunction syndrome (two patients), cause unknown (one patient), large intestinal obstruction (one patient), and respiratory failure (one patient). Three of the adverse events leading to death were treatment-related and included cause unknown (one patient), large intestinal obstruction (one patient). and respiratory failure (one patient), oAdverse events leading to treatment discontinuation included two events of pneumonitis (grade 2), one event each of death (grade 5), edema peripheral (grade 2), large intestinal obstruction (grade 5), localized edema (grade 2),and respiratory failure (grade 5); Treatment modification included dose delay and infusion interruption. Abbreviations: TEAE, treatment-emergent adverse event; TRAE, treatment-related

	All Patients (N=80)		
Patients, n (%)	All Grades	Grade ≥3	
Anemia	36 (45.0)	9 (11.3)	
Alanine aminotransferase increased	27 (33.8)	4 (5.0)	
Aspartate aminotransferase increased	24 (30.0)	2 (2.5)	
Blood bilirubin increased	22 (27.5)	1 (1.3)	
Vhite blood cell count decreased	20 (25.0)	1 (1.3)	
Rash	19 (23.8)	2 (2.5)	
Hypothyroidism	19 (23.8)	0	
Blood creatinine phosphokinase increased	16 (20.0)	5 (6.3)	
Neutrophil count decreased	14 (17.5)	1 (1.3)	
/omiting	13 (16.3)	1 (1.3)	
- Typoalbuminemia	12 (15.0)	0	
Hyponatremia	12 (15.0)	2 (2.5)	
Abdominal pain	12 (15.0)	2 (2.5)	

^aData presented are for the safety analysis set, which included all patients who received any dose of tislelizumab.

References

- Dudley JC, et al. *Clin Cancer Res.* 2016;22(4):813-820. 2. Llosa NJ, et al. Cancer Discov. 2015;5(1):43-51.
- 3. Zhang T, et al. Cancer Immunol Immunother. 2018;67(7):1079-1090.

4. Li J, et al. J Clin Oncol. 2021;39(suppl 15):2569.

Acknowledgments

This study was sponsored by BeiGene, Ltd. Medical writing support, under the direction of the authors, was provided by Saxony Olivier, MMed For Path (SA), of Ashfield MedComms, an Inizio company, and was funded by BeiGene, Ltd. Editorial support was provided by Elizabeth Hermans, PhD, of BeiGene, Ltd.

Disclosures

36 months (%)

Quanli Gao reports a principal investigator role for BeiGene, Ltd.