# Zanubrutinib Demonstrates Superior Progression-Free Survival vs Ibrutinib for Relapsed/Refractory CLL/SLL: ALPINE Final Analysis

Talha Munir<sup>1</sup>, Jennifer R. Brown<sup>2</sup>, Barbara Eichhorst<sup>3</sup>, Peter Hillmen<sup>4</sup>, Nicole Lamanna<sup>5</sup>, Susan M. O'Brien<sup>6</sup>, Constantine S. Tam<sup>7,8</sup>, Lugui Qiu<sup>9</sup>, Maciej Kaźmierczak<sup>10</sup>, Wojciech Jurczak<sup>11</sup>, Keshu Zhou<sup>12</sup>, Martin Šimkovič<sup>13,14</sup>, Jiří Mayer<sup>15</sup>, Amanda Gillespie-Twardy<sup>16</sup>, Alessandra Ferrajoli<sup>17</sup>, Peter S. Ganly <sup>18</sup>, Robert Weinkove<sup>19,20</sup>, Sebastian Grosicki<sup>21</sup>, Andrzej Mital<sup>22</sup>, Tadeusz Robak<sup>23</sup>, Anders Österborg<sup>24,25</sup>, Habte A. Yimer<sup>26</sup>, Tommi Salmi<sup>27</sup>, Megan (Der Yu) Wang<sup>27</sup>, Lina Fu<sup>27</sup>, Jessica Li<sup>27</sup>, Kenneth Wu<sup>27</sup>, Aileen Cohen<sup>27</sup>, and Mazyar Shadman<sup>28,29</sup>

<sup>1</sup>Leeds Hospital NHS Trust, Leeds, United Kingdom; <sup>2</sup>Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; <sup>3</sup>Department of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen, Bonn, Cologne, Duesseldorf, Cologne, Germany; <sup>4</sup>St James's University Hospital, Leeds, United Kingdom; <sup>5</sup>Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; <sup>6</sup>Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; <sup>7</sup>The Alfred Hospital, Melbourne, Victoria, Australia; <sup>8</sup>Monash University, Melbourne, Victoria, Australia; <sup>9</sup>State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland; <sup>11</sup>Maria Skłodowska-Curie National Research Institute of Oncology, Krakow, Poland; <sup>12</sup>Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; <sup>13</sup>Hth Department of Internal Medicine - Hematology, University Hospital, Hradec Kralove, Czech Republic; <sup>14</sup>Faculty of Medicine, Charles University, Prague, Czech Republic; <sup>15</sup>Department of Internal Medicine-Hematology and Oncology, Masaryk University and University Hospital, Brno, Czech Republic; <sup>16</sup>Blue Ridge Cancer Care, Roanoke, VA, USA; <sup>17</sup>Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; <sup>18</sup>Department of Haematology, Christchurch Hospital, Christchurch, New Zealand; <sup>19</sup>Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand; <sup>20</sup>Ocancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand; <sup>21</sup>Department of Hematology, Medical University of Silesia, Katowice, Poland; <sup>22</sup>Department of Hematology and Transplantalogy, Medical University of Silesia, Katowice, Poland; <sup>22</sup>Department of Hematology, Medical University of Gdańsk, Gdańsk, Poland; <sup>23</sup>Medical University of Lodz, Lodz, Polan

Honoraria from Janssen, AstraZeneca, Alexion, Sobi, Novartis, Roche, Abbvie, Gilead; member of the board of directors or advisory committee for Janssen, AstraZeneca, Alexion, Abbvie, Novartis, Roche.

# Bruton Tyrosine Kinase Inhibition in CLL: Background

- BCR signaling is required for tumor expansion and proliferation in CLL and B-cell lymphomas<sup>1</sup>
  - BCR signaling is dependent on BTK
- Ibrutinib, a first-in-class, covalent BTK inhibitor, has transformed CLL therapy; however, it has properties that limit use
  - Treatment discontinuation from toxicities has been reported in 16%-23% of patients<sup>3-6</sup>
  - Exposure coverage between dosing intervals falls below IC<sub>50</sub> and variable BTK occupancy at trough has been observed

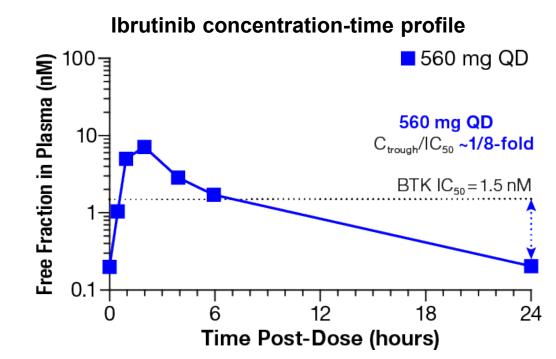



Figure adapted from Tam CS et al. Expert Rev Clin Pharmacol. 2021;14:11, 1329-1344.

BCR, B-cell antigen receptor; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; C<sub>trough</sub>, trough concentration; IC<sub>50</sub>, half maximal inhibitory concentration; QD, daily. 1. Singh SP, et al. *Molecular Cancer*. 2018; 17:57. 2. Molis S, et al. *Hematol Oncol*. 2020; 38: 129-136. 3. Sharman JP, et al. *Blood*. 2017;130(suppl 1):4060. 4. Mato AR, et al. *Haematologica*. 2018;103(5):874-879. 5. Munir T, et al. *Am J Hematol*. 2019;94(12):1353-1363. 6. Ghia P, et al. EHA Abstract EP636 2021.

# Zanubrutinib: Differentiating Features and Background

- Zanubrutinib is a next-generation BTKi
  - Zanubrutinib was designed to have greater BTK specificity than ibrutinib
  - Zanubrutinib has exposure coverage above IC<sub>50</sub>
  - Higher drug-concentration/IC<sub>50</sub> ratios would be expected to lead to more sustained and complete BTK inhibition to improve efficacy
- Zanubrutinib has demonstrated superior PFS by IRC over chemoimmunotherapy in treatment-naive CLL/SLL patients without del(17p)<sup>1</sup>

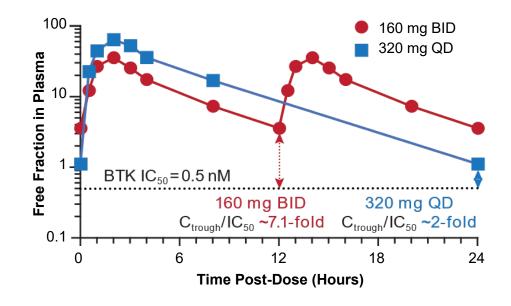
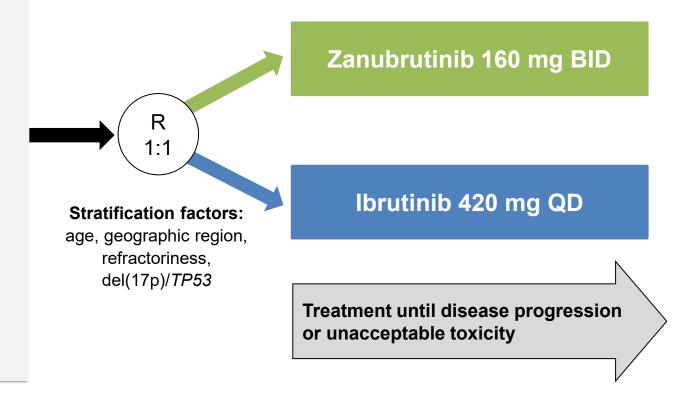



Figure modified from Ou YC, et al *Leukemia & Lymphoma.* 2021; 62(11):2612-2624.

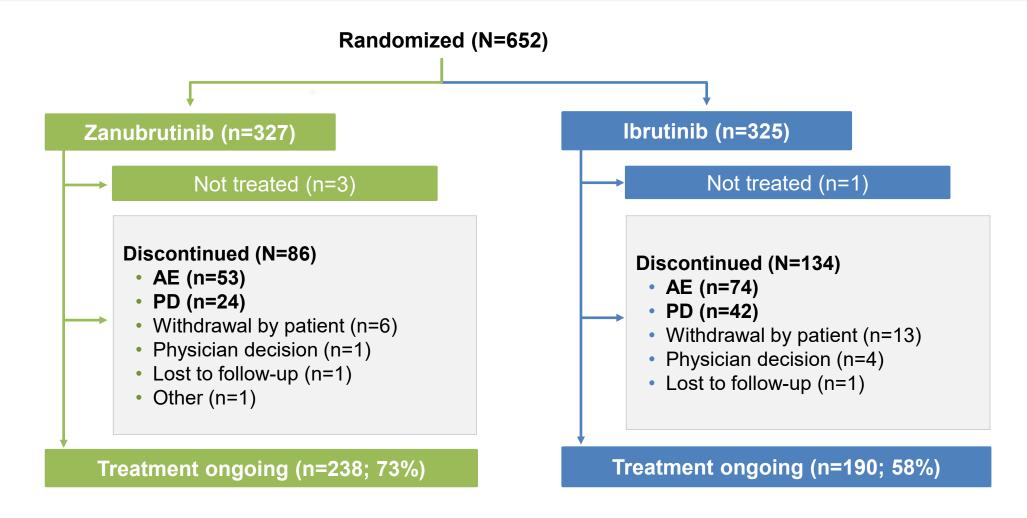
BID, twice daily; BTK, Bruton tyrosine kinase; BTKi, Bruton tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; del(17p), deletion in chromosome 17p; IC<sub>50</sub>, half maximal inhibitory concentration; IRC, independent review committee; PFS, progression-free survival; QD, daily; SLL, small lymphocytic lymphoma. 1. Tam CS, et al. *Lancet Oncol.* 2022;23(8):1031-1043.

# **ALPINE Study Design**

#### R/R CLL/SLL with $\geq$ 1 prior treatment


(Planned N=600, Actual N=652)

#### **Key Inclusion Criteria**


- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

#### **Key Exclusion Criteria**

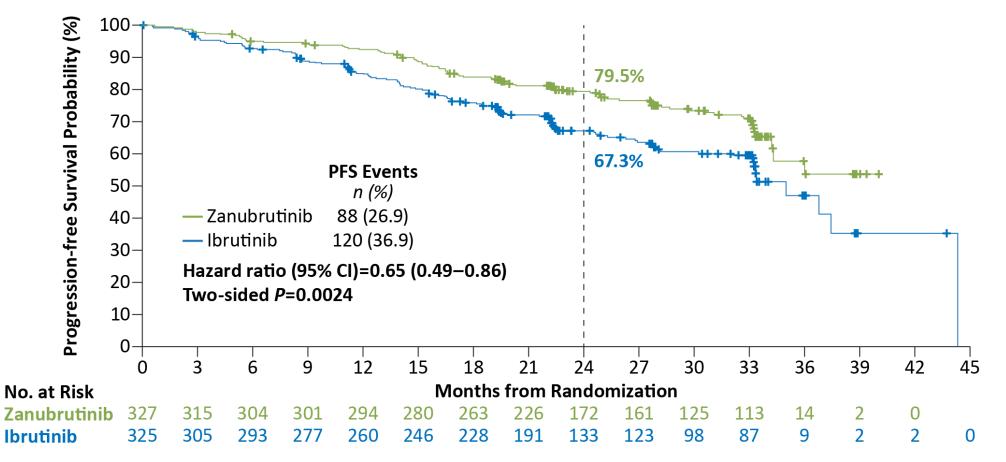
- Prior BTKi therapy
- Treatment with warfarin or other vitamin K antagonists



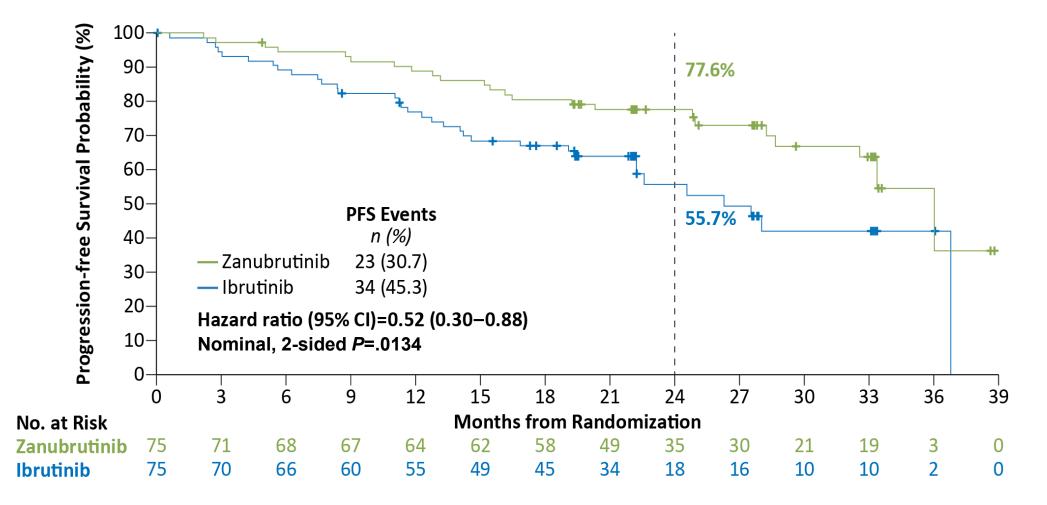
# **Patient Disposition**



# **Balanced Demographics and Disease Characteristics**


|                                                                                                             | Zanubrutinib<br>(n=327)                   | lbrutinib<br>(n=325)                      |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| <b>Age, median (range)</b><br>≥65 years, n (%)                                                              | <b>67 (35-90)</b><br>201 (61.5)           | <b>68 (35-89)</b><br>200 (61.5)           |
| Male, n (%)                                                                                                 | 213 (65.1)                                | 232 (71.4)                                |
| ECOG PS ≥1, n (%)                                                                                           | 198 (60.6)                                | 203 (62.5)                                |
| Prior lines of systemic therapy, median (range)<br>>3 prior lines, n (%)                                    | <b>1 (1-6)</b><br>24 (7.3)                | <b>1 (1-12)</b><br>30 (9.2)               |
| del(17p) and/or <i>TP53<sup>mut</sup></i> , n (%)<br>del(17p)<br><i>TP53<sup>mut</sup></i> without del(17p) | <b>75 (22.9)</b><br>45 (13.8)<br>30 (9.2) | <b>75 (23.1)</b><br>50 (15.4)<br>25 (7.7) |
| del(11q), n (%)                                                                                             | 91 (27.8)                                 | 88 (27.1)                                 |
| IGHV mutational status, n (%)<br>Mutated<br>Unmutated                                                       | 79 (24.2)<br><b>239 (73.1)</b>            | 70 (21.5)<br><b>239 (73.5)</b>            |
| Complex karyotype <sup>a</sup>                                                                              | 56 (17.1)                                 | 70 (21.5)                                 |
| Bulky disease (≥5 cm), n (%)                                                                                | 145 (44.3)                                | 149 (45.8)                                |

<sup>a</sup>Complex karyotype is defined as having ≥3 abnormalities.


ECOG PS, Eastern Cooperative Oncology Group performance status; del(11q), deletion in chromosome 11q; del(17p), deletion in chromosome 17p; IGHV, immunoglobulin heavy chain variable region; TP53<sup>mut</sup>, tumor protein 53 mutation.

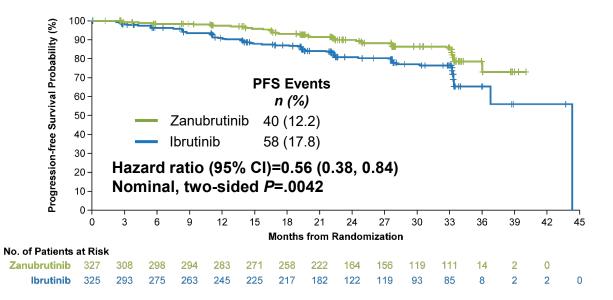
# Zanubrutinib PFS by IRC Superior to Ibrutinib

• Median study follow-up of 29.6 months



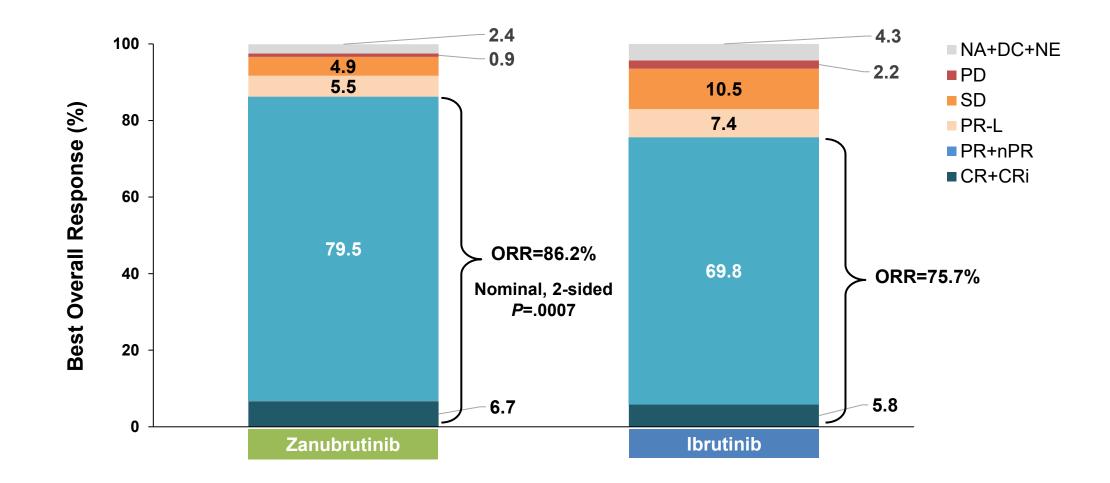
## Zanubrutinib Improved PFS<sup>a</sup> in Patients with del(17p)/TP53<sup>mut</sup>




# **PFS Favored Zanubrutinib Across Subgroups**

| Subgroup                                               | Zanubrutinil | b Ibrutinib | Hazard R           | atio (95% CI)ª    |
|--------------------------------------------------------|--------------|-------------|--------------------|-------------------|
|                                                        | Response     | e/Patients  | ITT: 0.65          |                   |
| Age group                                              |              |             |                    |                   |
| <65 years                                              | 23/126       | 43/125      |                    | 0 42 (0.25, 0.70) |
| ≥65 years                                              | 65/201       | 77/200      |                    | 0.78 (0.56, 1.09) |
| Sex                                                    |              |             |                    |                   |
| Male                                                   | 59/213       | 91/232      |                    | 0.61 (0.44, 0.84) |
| Female                                                 | 29/114       | 29/93       |                    | 0.72 (0.43, 1.21) |
| Prior lines of therapy                                 |              |             |                    |                   |
| 1–3                                                    | 80/303       | 102/295     | <b>⊢●</b> →1       | 0.67 (0.50, 0.90) |
| >3                                                     | 8/24         | 18/30       | <b>⊢</b> ● <u></u> | 0.45 (0.19, 1.04) |
| Baseline <i>del</i> (17p)/ <i>TP53</i> mutation status |              |             |                    |                   |
| Present                                                | 23/75        | 34/75       |                    | 0.52 (0.30, 0.88) |
| Absent                                                 | 65/251       | 86/250      | ⊢⊷                 | 0.67 (0.49, 0.93) |
| Baseline IGHV mutation status                          |              |             |                    |                   |
| Unmutated                                              | 72/239       | 98/239      | H.                 | 0.64 (0.47, 0.87) |
| Mutated                                                | 15/79        | 18/70       | <b>⊢ ♦</b> − − 1   | 0.63 (0.32, 1.26) |
| Complex karyotype                                      |              |             |                    |                   |
| Yes                                                    | 20/56        | 24/70       |                    | 0.91 (0.50, 1.66) |
| No                                                     | 37/153       | 45/130      |                    | 0.58 (0.37, 0.90) |
| 0.1 0.50 1.00 1.50 2.00                                |              |             |                    |                   |
|                                                        |              |             |                    |                   |
| Favors Zanubrutinib Favors Ibrutinib                   |              |             |                    |                   |

# Sensitivity Analyses Are Consistent with Primary PFS Analysis, Including Drug Interruptions and Treatment Discontinuation


#### 100 Survival Probability (%) 90 -80 -70-**PFS Events** 60n (%) 50 -81 (24.8) Zanubrutinib 40-Progression-free 101 (31.1) Ibrutinib 30-Hazard ratio (95% CI)=0.71 (0.53, 0.95) 20 Nominal. two-sided P=.0220 10 0 0 12 15 24 27 30 33 36 39 42 45 18 21 Months from Randomization No. of Patients at Risk Zanubrutinib 327 313 299 292 279 224 Ibrutinib 325 301 289 273 256 244 223 190 132 Ω

### **Treatment Discontinuation<sup>2</sup>**

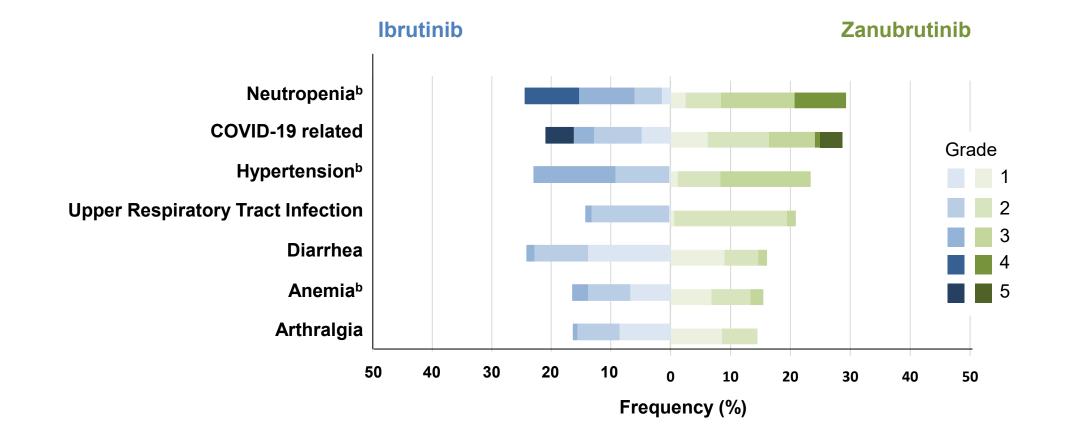


Drug Interruptions<sup>1,2</sup>

## Zanubrutinib Showed Higher ORR Assessed by IRC



DCO: 8 Aug 2022


CR, complete response; CRi, complete response with incomplete bone marrow recovery; DC, discontinued prior to first assessment; IRC, independent review committee; NA, not assessed; NE, not evaluable; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease.

# **Overall Safety/Tolerability Summary**

• Zanubrutinib safety profile was more favorable compared with ibrutinib

|                                   | Zanubrutinib<br>(n=324) | Ibrutinib<br>(n=324) |  |  |  |
|-----------------------------------|-------------------------|----------------------|--|--|--|
| Median treatment duration, months | 28.4                    | 24.3                 |  |  |  |
| Any grade AE                      | 318 (98.1)              | 321 (99.1)           |  |  |  |
| Grade 3 to 5                      | 218 (67.3)              | 228 (70.4)           |  |  |  |
| Grade 5                           | 33 (10.2)               | 36 (11.1)            |  |  |  |
| Serious AE                        | 136 (42.0)              | 162 (50.0)           |  |  |  |
| AEs leading to                    |                         |                      |  |  |  |
| Dose reduction                    | 40 (12.3)               | 55 (17.0)            |  |  |  |
| Dose interruption                 | 162 (50.0)              | 184 (56.8)           |  |  |  |
| Treatment discontinuation         | 50 (15.4)               | 72 (22.2)            |  |  |  |

# Most Common AEs<sup>a</sup>



# Zanubrutinib had a Favorable Cardiac Profile

• Lower rates of cardiac events, serious cardiac events, treatment discontinuation, and deaths

| Lower rate of serious cardiac AEs |
|-----------------------------------|
| reported with zanubrutinib        |

- Atrial fibrillation/flutter (n=2)
- MI/ACS (n=2)
- CHF (n=2)
- Fatal cardiac events:
  - Zanubrutinib, n=0 (0%)
  - Ibrutinib, n=6 (1.9%)

|                                                  | Zanubrutinib<br>(n=324) | lbrutinib<br>(n=324) |
|--------------------------------------------------|-------------------------|----------------------|
| Cardiac AEs                                      | 69 (21.3%)              | 96 (29.6%)           |
| Serious cardiac AEs                              | 6 (1.9%)                | 25 (7.7%)            |
| Cardiac AEs leading to treatment discontinuation | 1 (0.3)                 | 14 (4.3)             |
| Ventricular extrasystoles                        | 1 (0.3)                 | 0                    |
| Atrial fibrillation                              | 0                       | 5 (1.5)              |
| Cardiac arrest                                   | 0                       | 2 (0.6) <sup>a</sup> |
| Cardiac failure                                  | 0                       | 2 (0.6)              |
| Cardiac failure acute                            | 0                       | 1 (0.3) <sup>a</sup> |
| Congestive cardiomyopathy                        | 0                       | 1 (0.3) <sup>a</sup> |
| Myocardial infarction                            | 0                       | 1 (0.3) <sup>a</sup> |
| Palpitations                                     | 0                       | 1 (0.3)              |
| Ventricular fibrillation                         | 0                       | 1 (0.3)              |

<sup>a</sup>Cardiac deaths. One death not listed due to myocardial infarction with ibrutinib discontinuation due to diarrhea 14 days prior to the fatal event. ACS, acute coronary syndrome; AE, adverse event; CHF, congestive heart failure; MI, myocardial infarction.

# Fewer Atrial Fibrillation/Flutter Events With Zanubrutinib



# Conclusions

- Zanubrutinib demonstrated superior PFS over ibrutinib in patients with relapsed/refractory CLL/SLL
  - PFS benefit seen across all major subgroups, including the del(17p)/TP53<sup>mut</sup> population
- Zanubrutinib had a favorable safety profile compared with ibrutinib
  - Lower rate of grade ≥3 and serious AEs, fewer AEs leading to treatment discontinuation and dose reduction
  - Zanubrutinib had a better cardiac profile than ibrutinib with lower rates of atrial fibrillation, serious cardiac events, cardiac events leading to treatment discontinuation, and fatal cardiac events
- ALPINE is the first study to demonstrate PFS superiority in a head-to-head comparison of BTK inhibitors in patients with relapsed/refractory CLL/SLL; zanubrutinib has now proven superiority to ibrutinib in both PFS and ORR

# Acknowledgments

- We would like to thank our independent data monitoring committee members for their efforts in this study.
- Additionally, we would like to thank the BeiGene ALPINE study team for all their efforts and hard work.
- Assistance with medical writing and editorial support, under the direction of the authors, was provided by ArticulateScience, LLC, and was funded by BeiGene in accordance with Good Publication Practice (GPP) guidelines (<u>http://www.ismpp.org/gpp-2022</u>).

## **Correspondence:**

Talha Munir; email: tmunir@nhs.net