

## 2024 Annual Meeting of Chinese Society of Clinical Oncology

#### Extended Follow-up of ALPINE Randomized Phase 3 Study Confirms Sustained Superior Progression-free Survival of Zanubrutinib Versus Ibrutinib for Treatment of Relapsed/Refractory Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (R/R CLL/SLL)

#### **Presenter: Professor Keshu Zhou**

Lugui Qiu<sup>1,2</sup>, Jennifer R. Brown<sup>3</sup>, Barbara Eichhorst<sup>4</sup>, Nicole Lamanna<sup>5</sup>, Susan M. O'Brien<sup>6</sup>, Constantine S. Tam<sup>7,8</sup>, Maciej Każmierczak<sup>9</sup>, Wojciech Jurczak<sup>10</sup>, Keshu Zhou<sup>11</sup>, Martin Simkovic<sup>12,13</sup>, Jiri Mayer<sup>14</sup>, Amanda Gillespie-Twardy<sup>15</sup>, Alessandra Ferrajoli<sup>16</sup>, Peter S. Ganly<sup>17</sup>, Robert Weinkove<sup>18,19</sup>, Sebastian Grosicki<sup>20</sup>, Andrzej Mital<sup>21</sup>, Tadeusz Robak<sup>22</sup>, Anders Osterborg<sup>23,24</sup>, Habte A. Yimer<sup>25</sup>, Megan (Der Yu) Wang<sup>26</sup>, Tommi Salmi<sup>27</sup>, Liping Wang<sup>28</sup>, Jessica Li<sup>28</sup>, Kenneth Wu<sup>26</sup>, Aileen Cohen<sup>26</sup>, Mazyar Shadman<sup>29,30</sup>

¹National Clinical Research Center for Hematological Disorders, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; ²Tianjin Institutes of Health Science, Tianjin, China; ³Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Department of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen, Bonn, Cologne, Duesseldorf, Cologne, Germany; ⁵Herbert Irving Comprehensive Cancer Center, University of California, Irvine, CA, USA; ¹The Alfred Hospital, Melbourne, Victoria, Australia; ³University of Medical Sciences, Poznan, Poland; ¹University of Medicine — Haematology, University Hospital Hradec Kralove, Czech Republic; ¹University of Medicine — Haematology, University Hospital, Brno, Czech Republic; ¹University of Medicine — Haematology, University University of Haematology, Christchurch Hospital, Brno, Czech Republic; ¹University of Evas MD Anderson Cancer Center, Houston, TX, USA; ¹University of Haematology, Christchurch Hospital, Christchurch, New Zealand; ¹University of Haematology, Christchurch Hospital, Christchurch, New Zealand; ¹University of Haematology, Medical University of Gdańsk, Poland; ²University of Haematology, Medical University of Gdańsk, Poland; ²University of Haematology, Karolinska University of Haematology, Karolinska University Hospital, Stockholm, Sweden; ²University of Haematology, Karolinska University of Washington, Seattle, WA, USA; ¹USA; ¹USA;

# Zanubrutinib Is a Differentiated BTKi With High Potency, Bioavailability, and Selectivity

- Zanubrutinib is highly selective for BTK and has potent inhibitory activity against BTK<sup>1</sup>
- Zanubrutinib has no active metabolite; ibrutinib and acalabrutinib each have an active metabolite (PCI-45227 and M27, respectively) with activity on kinases other than BTK<sup>1</sup>
- Zanubrutinib has continuous exposure coverage above its IC<sub>50</sub> compared with ibrutinib<sup>2</sup> and acalabrutinib<sup>3</sup>
  - Higher drug-concentration/IC<sub>50</sub> ratios would be expected to lead to more sustained and complete BTK inhibition to improve efficacy

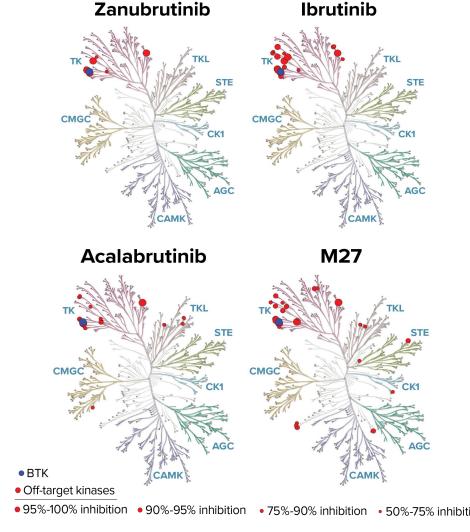
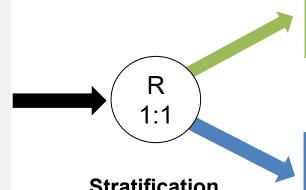



Figure adapted from Shadman et al. Lancet Haematol. 2023.

<sup>&</sup>lt;sup>1</sup>Tam et al. *Blood Cancer J.* 2023; <sup>2</sup>Ou, et al. *Leuk Lymphoma*. 2021; <sup>3</sup>Marostica et al. *Cancer Chemother Pharmacol*. 2015.

### **ALPINE Study Design (NCT03734016)**


R/R CLL/SLL with ≥1 prior treatment (N=652)

#### **Key Inclusion Criteria**

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI
- Requires treatment per iwCLL

#### **Key Exclusion Criteria**

- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists



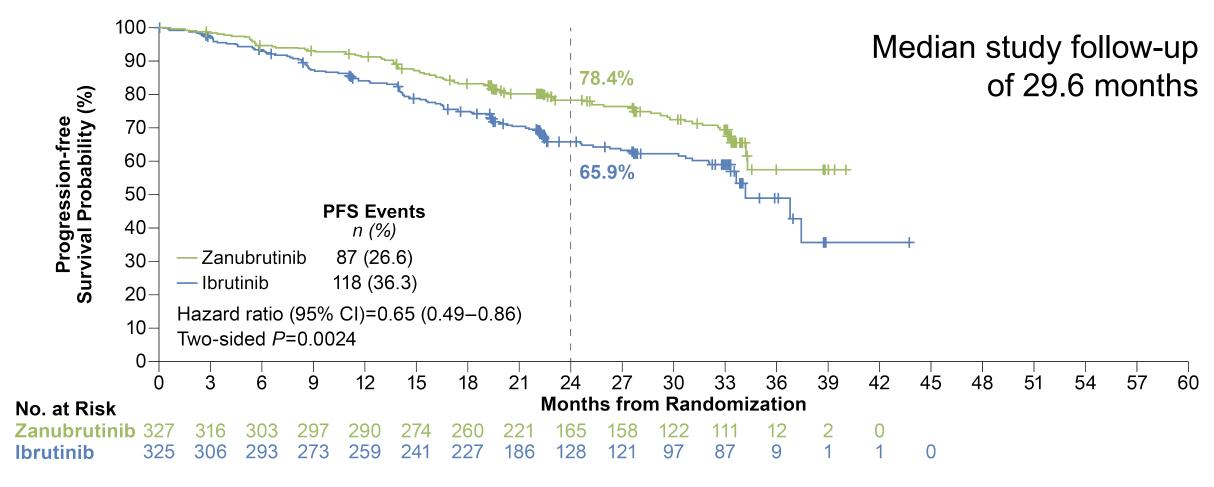
# Stratification factors:

Age, geographic region, refractoriness, del(17p)/TP53

Zanubrutinib 160 mg BID

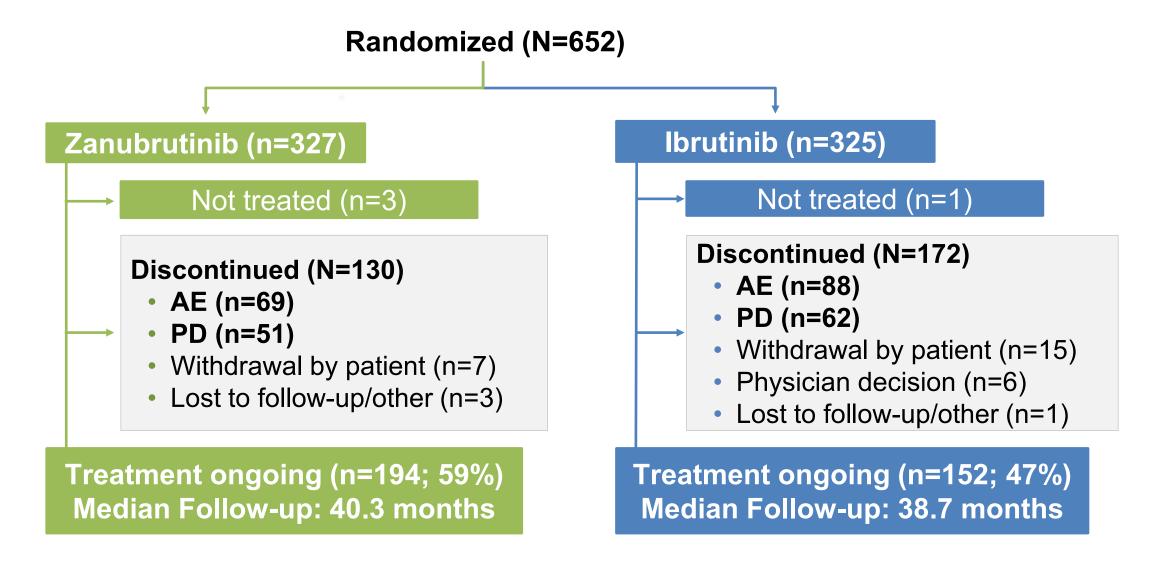
Ibrutinib 420 mg QD

Treatment until disease progression or unacceptable toxicity

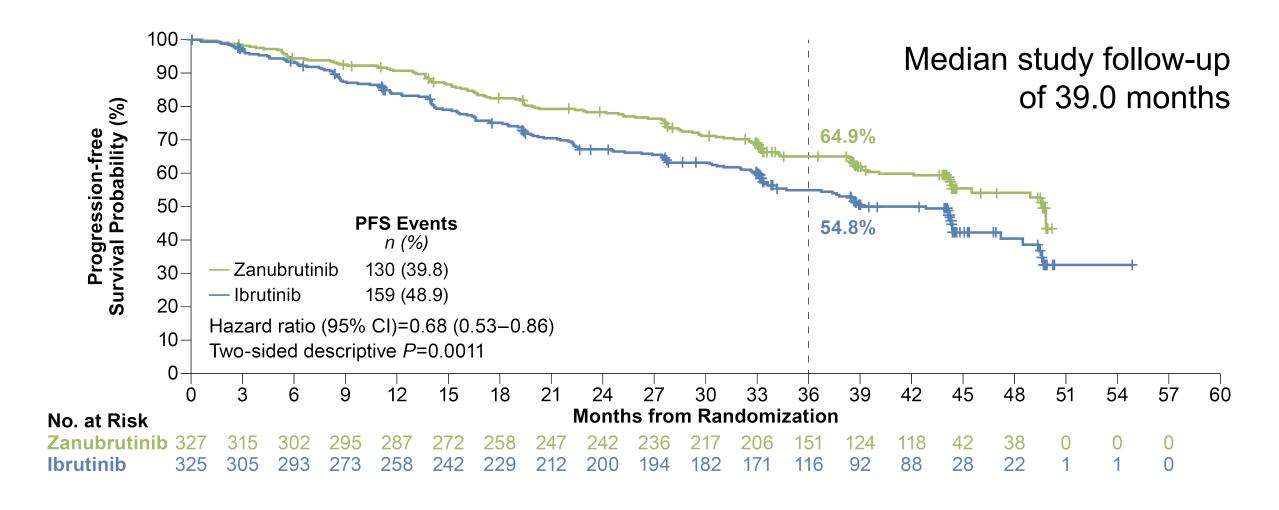

## **Balanced Demographics and Disease Characteristics**

|                                                                                                             | Zanubrutinib<br>(n=327)                   | lbrutinib<br>(n=325)                      |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| <b>Age, median (range)</b><br>≥65 years, n (%)                                                              | <b>67 (35-90)</b><br>201 (61.5)           | <b>68 (35-89)</b><br>200 (61.5)           |
| Male, n (%)                                                                                                 | 213 (65.1)                                | 232 (71.4)                                |
| ECOG PS ≥1, n (%)                                                                                           | 198 (60.6)                                | 203 (62.5)                                |
| Prior lines of systemic therapy, median (range) >3 prior lines, n (%)                                       | <b>1 (1-6)</b><br>24 (7.3)                | <b>1 (1-12)</b><br>30 (9.2)               |
| <b>del(17p) and/or <i>TP53<sup>mut</sup>, n (%)</i></b> del(17p) <i>TP53<sup>mut</sup></i> without del(17p) | <b>75 (22.9)</b><br>45 (13.8)<br>30 (9.2) | <b>75 (23.1)</b><br>50 (15.4)<br>25 (7.7) |
| IGHV mutational status, n (%) Mutated Unmutated                                                             | 80 (24.5)<br>240 (73.4)                   | 70 (21.5)<br>241 (74.2)                   |
| Complex karyotype <sup>a</sup>                                                                              | 56 (17.1)                                 | 70 (21.5)                                 |
| Bulky disease (≥5 cm), n (%)                                                                                | 145 (44.3)                                | 149 (45.8)                                |

<sup>&</sup>lt;sup>a</sup>Complex karyotype is defined as having ≥3 abnormalities.


Brown JR, Eichhorst B, Hillmen P, et al. N Engl J Med. 2023;388:319-332.

# Previous Report Demonstrated Zanubrutinib is Clinically and Statistically Superior to Ibrutinib

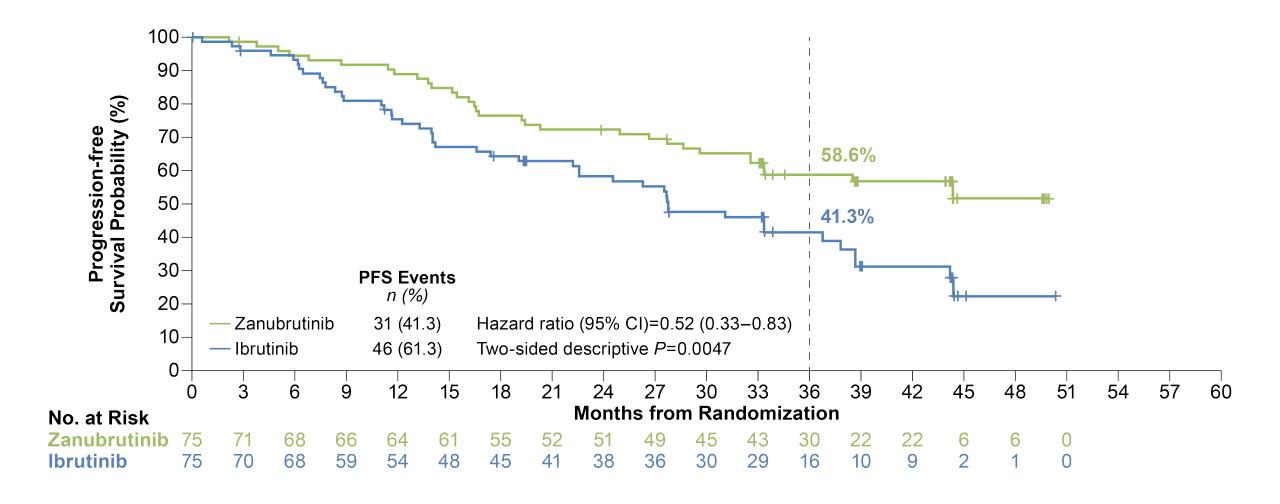



Brown JR, Eichhorst B, Hillmen P, et al. N Engl J Med. 2023;388:319-332.

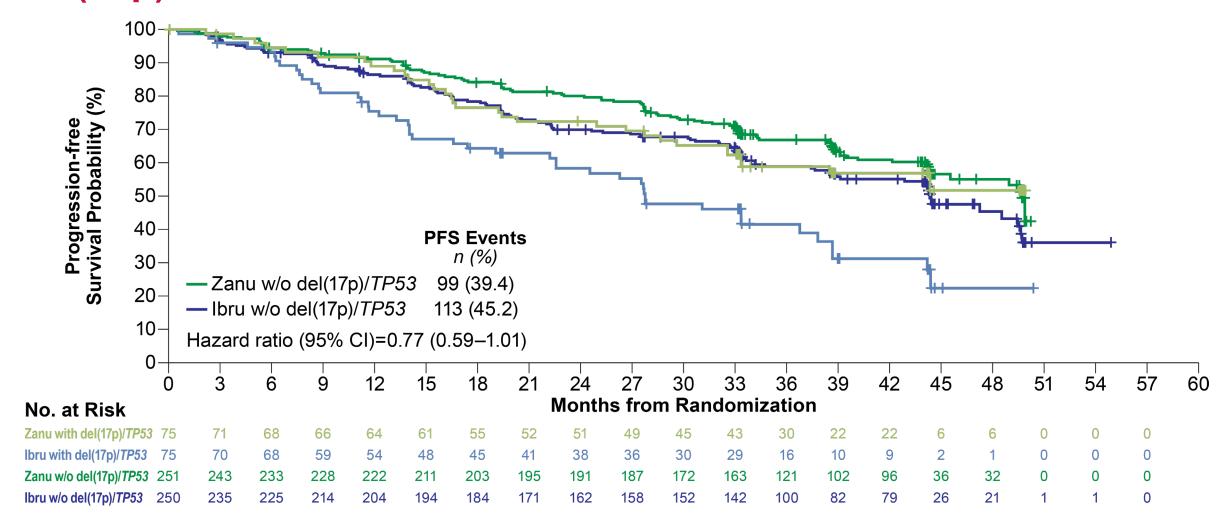
#### Patient Disposition at Extended Follow-up



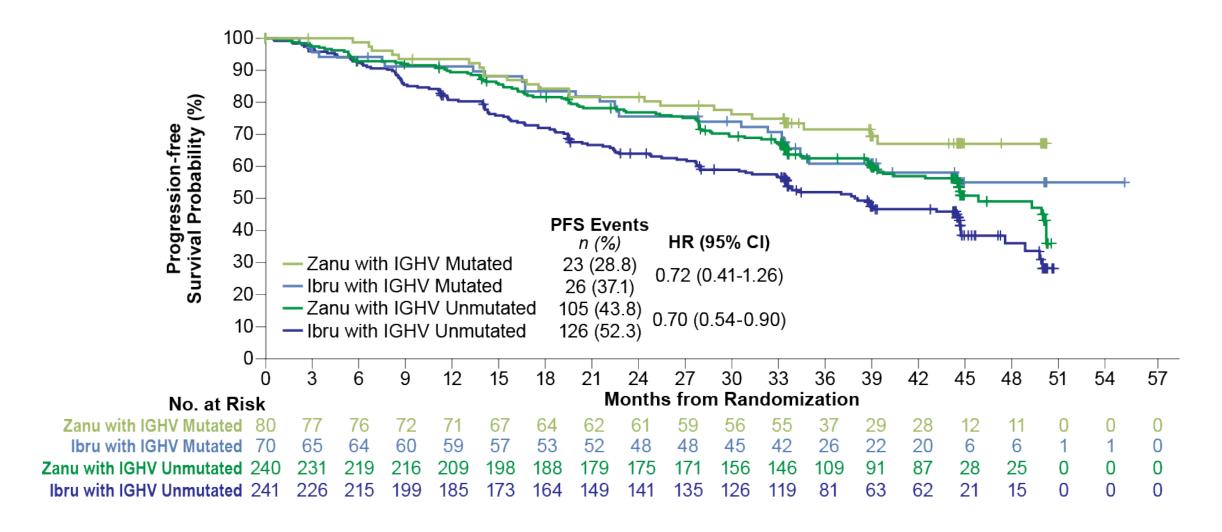
#### Zanubrutinib Sustains PFS Benefit Over Ibrutinib At Extended Followup



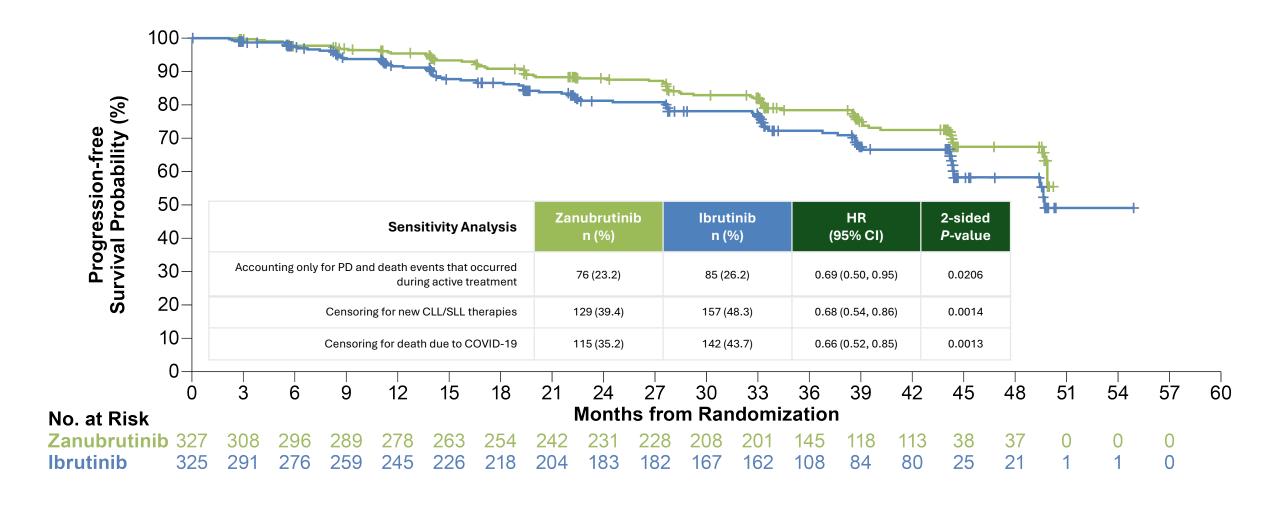

## PFS Favored Zanubrutinib Across Subgroups


| Subgroup                                                                                                                                                        |                                                  | <b>Zanubrutinik</b><br><i>Events/</i> | <b>o Ibrutinib</b><br>Patients | ITT=0.68               |             | Hazard Ratio<br>(95% CI) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|--------------------------------|------------------------|-------------|--------------------------|
| Ago group                                                                                                                                                       | <65 years                                        | 45/126                                | 61/125                         | <b>⊢</b>               |             | 0.64 (0.43, 0.94)        |
| Age group                                                                                                                                                       | ≥65 years                                        | 85/201                                | 98/200                         | <b>⊢</b>               |             | 0.74 (0.55, 0.98)        |
| Cov                                                                                                                                                             | Male                                             | 82/213                                | 118/232                        | <b>⊢</b>               |             | 0.64 (0.48, 0.85)        |
| Sex                                                                                                                                                             | Female                                           | 48/114                                | 41/93                          |                        | —           | 0.84 (0.55, 1.27)        |
| Prior lines                                                                                                                                                     | 1-3                                              | 120/303                               | 135/295                        | H <mark>●</mark> →     |             | 0.76 (0.59, 0.97)        |
| of therapy                                                                                                                                                      | >3                                               | 10/24                                 | 24/30                          | <b>⊢</b> ●── <u></u> + |             | 0.37 (0.17, 0.77)        |
| Baseline del(17p)/                                                                                                                                              | Present                                          | 31/75                                 | 46/75                          | <b>⊢</b>               |             | 0.52 (0.33, 0.83)        |
| TP53 mutation status                                                                                                                                            | Absent                                           | 99/251                                | 113/250                        | ⊢ <mark>i●</mark>      |             | 0.77 (0.59, 1.01)        |
| Pulley diagon                                                                                                                                                   | Yes                                              | 67/145                                | 71/149                         | ļ <del>. </del> ●      | <b>⊣</b>    | 0.91 (0.65, 1.27)        |
| Bulky disease                                                                                                                                                   | No                                               | 63/182                                | 88/176                         | <b>⊢</b>               |             | 0.55 (0.40, 0.76)        |
| Baseline IGHV                                                                                                                                                   | Unmutated                                        | 105/240                               | 126/241                        | <b>⊢</b> •             |             | 0.70 (0.54, 0.90)        |
| mutation status                                                                                                                                                 | Mutated                                          | 23/80                                 | 26/70                          | <b>⊢</b>               | <b>—</b>    | 0.72 (0.41, 1.26)        |
| Disease stage                                                                                                                                                   | Binet stage of A/B or Ann Arbor stage I/II bulky | 71/183                                | 85/189                         | <b>-</b>               |             | 0.72 (0.53, 0.99)        |
|                                                                                                                                                                 | Binet stage C or Ann Arbor stage III/IV          | 59/144                                | 73/135                         | <b>⊢</b> •             |             | 0.67 (0.47, 0.94)        |
| Complex karyotype                                                                                                                                               | Yes                                              | 33/56                                 | 35/70                          | H <del>.</del>         | <del></del> | 0.99 (0.62, 1.60)        |
|                                                                                                                                                                 | No                                               | 52/153                                | 63/130                         | <b>⊢</b>               |             | 0.57 (0.39, 0.82)        |
| 0.00 0.50 1.00 1.50 2.00  aHazard ratio and 95% confidence interval were unstratified for subgroups.  Favors Zanubrutinib ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← |                                                  |                                       |                                |                        |             |                          |

Data cutoff: 15 Sep 2023

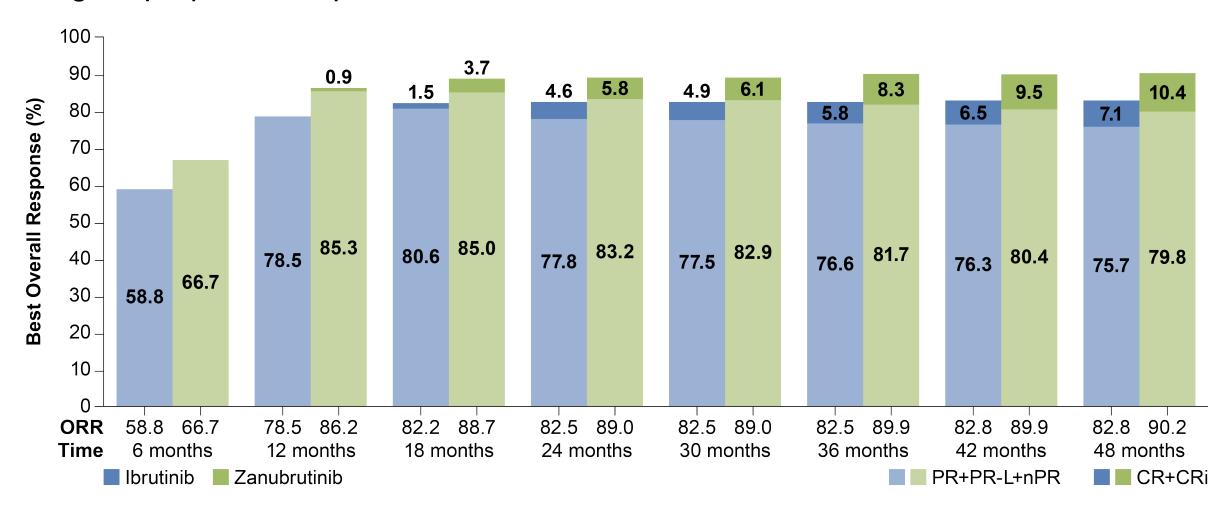

# Improved PFS Was Demonstrated With Zanubrutinib in Patients With del(17p)/*TP53*<sup>mut</sup>



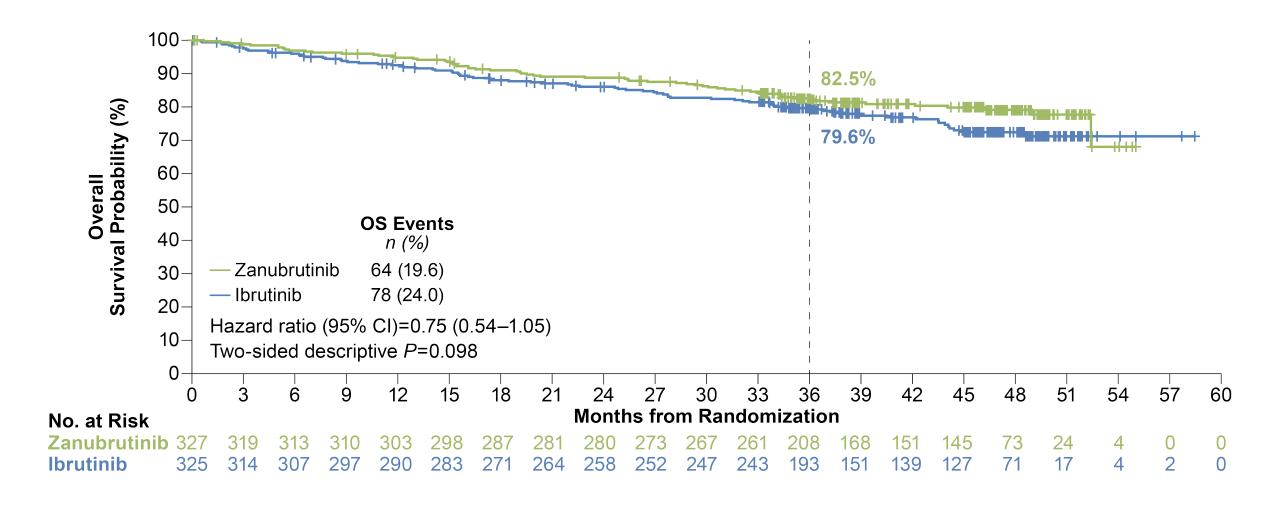

# Zanubrutinib Demonstrated Robust PFS Benefit Independent of del(17p)/TP53 Mutation Status



# **Zanubrutinib Demonstrated Robust PFS Benefit Independent of IGHV Mutation Status**




# Zanubrutinib PFS Benefit Was Consistent Across Multiple Sensitivity Analyses



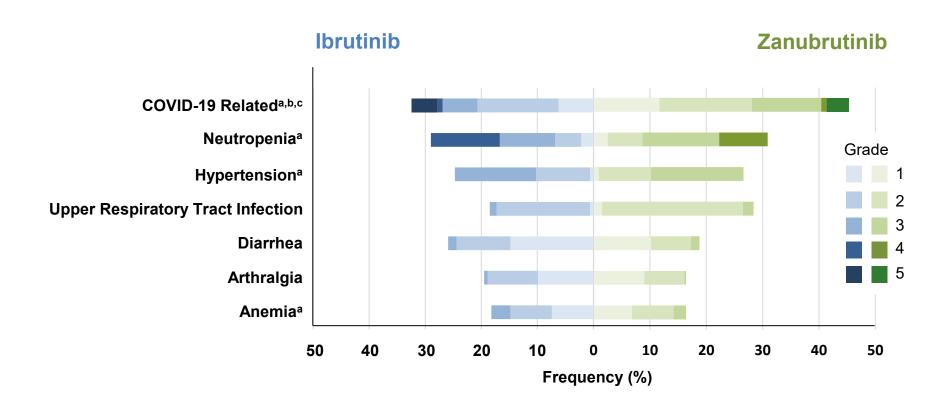

#### Complete Responses Deepen Over Time in Both Arms

A higher proportion of patients achieved CR/CRi with zanubrutinib than ibrutinib



### **Overall Survival at Longer Follow-up**




### **Overall Safety/Tolerability Summary**

#### Zanubrutinib safety profile remained favorable vs ibrutinib

|                                   | Zanubrutinib<br>(n=324) | lbrutinib<br>(n=324) |  |  |
|-----------------------------------|-------------------------|----------------------|--|--|
| Median treatment duration, months | 38.3 (0.4, 54.9)        | 35.0 (0.1, 58.4)     |  |  |
| Any grade adverse event           | 320 (98.8)              | 323 (99.7)           |  |  |
| Grade 3 to 5                      | 235 (72.5)              | 251 (77.5)           |  |  |
| Grade 5                           | 41 (12.7)               | 40 (12.3)            |  |  |
| Serious adverse event             | 165 (50.9)              | 191 (59.0)           |  |  |
| Adverse events leading to         |                         |                      |  |  |
| Dose reduction                    | 47 (14.5)               | 59 (18.2)            |  |  |
| Dose interruption                 | 196 (60.5)              | 201 (62.0)           |  |  |
| Treatment discontinuation         | 64 (19.8)               | 85 (26.2)            |  |  |
| Hospitalization                   | 150 (46.3)              | 180 (55.6)           |  |  |

Data cutoff: 15 Sep 2023

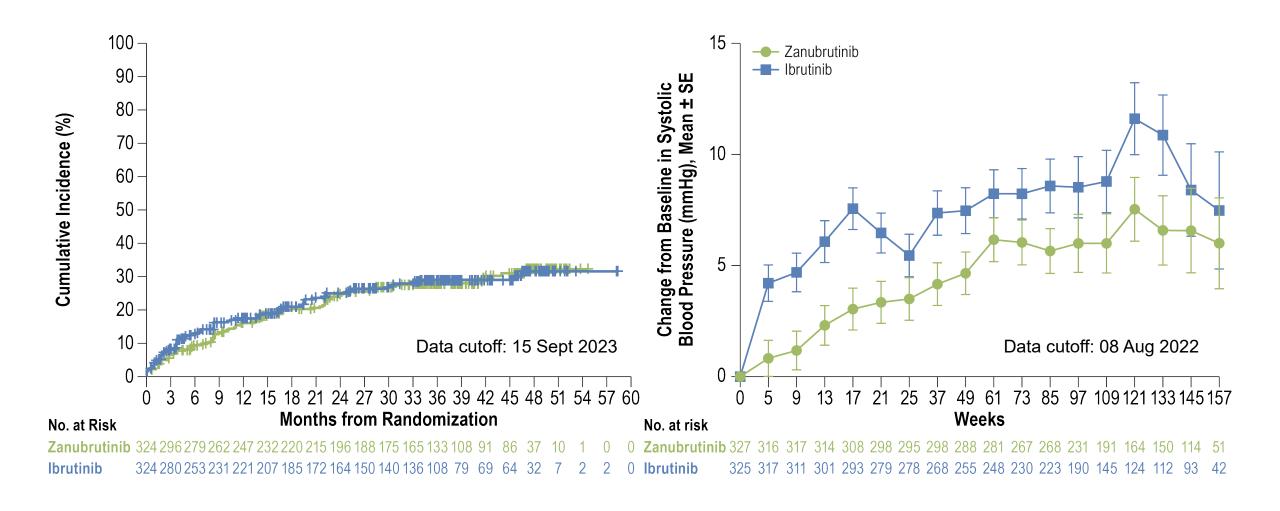
# Most Common Adverse Events by Grade Occurring ≥15% of Patients in Both Arms



<sup>&</sup>lt;sup>a</sup>Pooled MedDRA preferred terms

<sup>&</sup>lt;sup>b</sup>Includes preferred terms of COVID-19, COVID-19 pneumonia, and suspected COVID-19.

<sup>&</sup>lt;sup>c</sup>Grade 5 COVID-related events: 13 (4.0%) with zanubrutinib and 15 (4.6%) with ibrutinib.


## Adverse Events of Special Interest<sup>a</sup> Occurring in ≥2 Patients

|                               |            | Zanubrutinib<br>(n=324) |            | Ibrutinib<br>(n=324) |  |
|-------------------------------|------------|-------------------------|------------|----------------------|--|
|                               | Any Grade  | Grade ≥3                | Any Grade  | Grade ≥3             |  |
| Infection                     | 264 (81.5) | 115 (35.5)              | 260 (80.2) | 111 (34.3)           |  |
| Opportunistic Infections      | 8 (2.5)    | 6 (1.9)                 | 13 (4.0)   | 5 (1.5)              |  |
| COVID-19 Related <sup>b</sup> | 145 (44.8) | 56 (17.3)               | 105 (32.4) | 38 (11.7)            |  |
| Bleeding                      | 142 (43.8) | 12 (3.7)                | 144 (44.4) | 13 (4.0)             |  |
| Major Hemorrhage              | 13 (4.0)   | 12 (3.7)                | 16 (4.9)   | 13 (4.0)             |  |
| Hypertension                  | 86 (26.5)  | 53 (16.4)               | 80 (24.7)  | 47 (14.5)            |  |
| Atrial fibrillation/flutter   | 22 (6.8)   | 10 (3.1)                | 53 (16.4)  | 16 (4.9)             |  |
| Anemia                        | 53 (16.4)  | 7 (2.2)                 | 59 (18.2)  | 11 (3.4)             |  |
| Neutropenia                   | 100 (30.9) | 72 (22.2)               | 94 (29.0)  | 72 (22.2)            |  |
| Thrombocytopenia              | 43 (13.3)  | 12 (3.7)                | 53 (16.4)  | 19 (5.9)             |  |
| Second primary malignancies   | 46 (14.2)  | 26 (8.0)                | 52 (16.0)  | 19 (5.9)             |  |

<sup>&</sup>lt;sup>a</sup>Pooled MedDRA preferred terms.

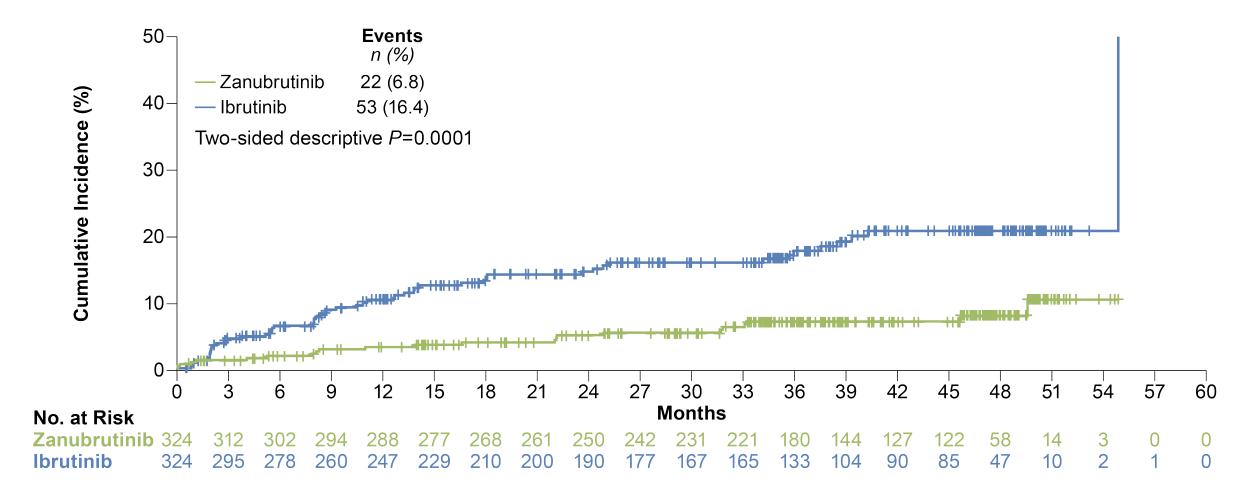
<sup>&</sup>lt;sup>b</sup>Includes preferred terms of COVID-19, COVID-19 pneumonia, and suspected COVID-19.

# Despite Similar Hypertension Rates, Change in Systolic Blood Pressure Was Lower with Zanubrutinib



# Zanubrutinib Continues to Demonstrate a More Favorable Cardiac Safety Profile Than Ibrutinib

- Serious cardiac adverse events were lower with zanubrutinib vs ibrutinib
  - Atrial fibrillation/flutter (3 vs 13)
  - Ventricular fibrillation (0 vs 2)
  - Ml<sup>a</sup>/acute coronary syndrome (3 vs 3)
- Fatal cardiac events<sup>b</sup>:
  - Zanubrutinib, n=0 (0%)
  - Ibrutinib, n=6 (1.9%)


<sup>a</sup>Including acute MI.

Abbreviations: MI, myocardial infarction.

|                                                             | Zanubrutinib<br>(n=324) | lbrutinib<br>(n=324) |
|-------------------------------------------------------------|-------------------------|----------------------|
| Cardiac adverse events                                      | 80 (24.7)               | 112 (34.6)           |
| Serious cardiac adverse events                              | 11 (3.4)                | 31 (9.6)             |
| Cardiac adverse events leading to treatment discontinuation | 3 (0.9)                 | 15 (4.6)             |
| Ventricular extrasystoles                                   | 1 (0.3)                 | 0                    |
| Atrial fibrillation/flutter                                 | 1 (0.3)                 | 6 (1.9)              |
| Cardiac failure                                             | 1 (0.3)                 | 2 (0.6)              |
| Cardiac arrest                                              | 0                       | 2 (0.6) <sup>b</sup> |
| Cardiac failure acute                                       | 0                       | 1 (0.3) <sup>b</sup> |
| Congestive cardiomyopathy                                   | 0                       | 1 (0.3) <sup>b</sup> |
| Myocardial infarction                                       | 0                       | 1 (0.3) <sup>b</sup> |
| Palpitations                                                | 0                       | 1 (0.3)              |
| Ventricular fibrillation                                    | 0                       | 1 (0.3)              |

<sup>&</sup>lt;sup>b</sup>Fatal cardiac event (n=6); 1 death (myocardial infarction with ibrutinib) was not listed due to discontinuation due to diarrhea 14 days prior to the fatal event.

# Significantly Fewer Atrial Fibrillation/Flutter Events With Zanubrutinib Than Ibrutinib



Median study follow-up 39.0 months

#### **Conclusions**

- ALPINE is the only study to demonstrate PFS superiority in a head-to-head comparison of BTK inhibitors
- Zanubrutinib demonstrated sustained PFS benefit over ibrutinib in patients with R/R CLL/SLL with a median follow-up of 39 months
  - Durable PFS benefits seen across major subgroups, including the del(17p)/TP53<sup>mut</sup> and IGHV unmutated populations
  - PFS benefit is consistent across multiple sensitivity analyses demonstrating that PFS advantage with zanubrutinib was primarily driven by efficacy and not tolerability
- While responses deepened over time in both arms, ORR was higher with zanubrutinib with increased rates of CR/CRi compared with ibrutinib
- Zanubrutinib continues to demonstrate a more favorable safety/tolerability profile compared with ibrutinib
  - Lower rate of grade ≥3 and serious AEs, fewer AEs leading to treatment discontinuation, hospitalization, and dose reduction
    - Safer cardiac profile than ibrutinib with significantly lower rates of atrial fibrillation, serious cardiac events, cardiac events leading to treatment discontinuation, and no fatal cardiac events
- With over 3 years of follow-up, these data reconfirm zanubrutinib improved efficacy over ibrutinib and a more favorable safety profile in patients with R/R CLL/SLL

#### The authors would like to thank the investigators, site support staff, and especially the patients and their caregivers for participating in the ALPINE study



Ting, Stephen Opat, Stephen Marlton, Paula Leahy, Michael Hourigan, Matthew Janowski, Woit Walker, Patricia



Hu, Jianda Weng, Jianyu Zhou, Keshu Xu, Wei Feng, Ru Zhang, Wei

Gao, Sujun



Pan, Ling Liu. Pena Hu, Yu Zhang, Huilai Jing, Hongmei Yu, Kang Jin, Jie



Wang, Zhao Zhu, Xiongpeng Wang, Tingyu Liu, Zhuogang Li, Ping



Hajek, Roman Simkovic, Martin Turcsanyi, Peter Mayer, Jiri



Ferrant, Emanuelle Laribi, Kamel Gruchet, Cecile Dartigeas, Caroline Villemagne, Bruno Bareau, Benoit



Eichhorst. Barbara Wehler, Thomas



Schaar, Cornelis

Frustaci, Anna Maria Laurenti. Luca Coscia, Marta

Ghia. Paolo





Hughes, Marie Elinder Camburn Weinkove, Robert Islam, Shahid Liang, James Ganly, Peter



Juliusson, Gunnar Palma, Marzia



Jurczak, Wojciech Robak, Tadeusz Holoida, Jadwiga Krzanowski, Jacek Ciepluch, Hanna Mital, Andrzej Grosicki, Sebastian Kazmierczak, Maciej Piszcz, Jaroslaw



Garcia Velva, Jose Antonio Abril Sabater, Laura Casado Montero. Luis Felipe Lopez Jimenez, Javier Yanez San Segundo, Lucrecia Baltasar, Patricia Francesc, Bosch Argüello, Miguel Magnano Mayer, Laura Roncero, Josep



Hutchinson, Claire Munir, Tahla Forconi. Francesco Shah, Nimish Martinez De La Calle, Nicolas Marshall, Scott Walewska, Renata Paneesha, Shankaranarayana Preston, Gavin Young, Moya



Brown, Jennifer Flinn, lan Kingsley, Edwin Shadman, Mazyar Quick, Donald Brander, Danielle Yimer, Habte Ferrajoli, Alessandra Spurgeon, Stephen Graf, Solomon Chaudhry, Arvind



Coleman, Morton Freeman, Benjamin Brvan, Locke Hall, Ryan Twardy, Amanda Hrom, John Stevens, Don Anz III, Bertrand Bociek, Robert Lamanna, Nicole

Sharman, Jeff Burke, John Santiago, Manuel Ruxer, Robert Farber, Charles Zafar, Sved Cultrera. Jennifer Kambhampati, Suman Eradat, Herbert

- Additionally, we would like to thank the BeiGene ALPINE study team for all their efforts and hard work
- Slide development, under the direction of the authors, was provided by Regina Switzer, PhD, Yin Lin, PhD, Nathan McCance, BFA, and Elizabeth Hermans, PhD