Preliminary efficacy and safety of the Bruton tyrosine kinase degrader BGB-16673 in patients with relapsed or refractory Waldenström macroglobulinemia: Results from the phase 1 CaDAnCe-101 study

Authors: John F. Seymour,¹ Chan Y. Cheah,²⁻⁴ Ricardo D. Parrondo,⁵ John N. Allan,⁶ Judith Trotman,⁷ Ranjana Advani,⁸ Herbert Eradat,⁹ Eric Mou,¹⁰ Pier Luigi Zinzani,¹¹ Masa Lasica,¹² Damien Roos-Weil,¹³ Emmanuelle Tchernonog,¹⁴ Jose Leis,¹⁵ Xiangmei Chen,¹⁶ Kunthel By,¹⁷ Shannon Fabre,¹⁷ Daniel Persky,¹⁷ Amit Agarwal,¹⁷ Constantine S. Tam*,¹⁸ Anna Maria Frustaci*¹⁹
*Joint senior co-authorship

Affiliations: ¹Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia; ²Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ³Medical School, University of Western Australia, Crawley, WA, Australia; ⁴Linear Clinical Research, Nedlands, WA, Australia; ⁵Mayo Clinic - Jacksonville, Jacksonville, FL, USA; ⁶Weill Cornell Medicine, New York, NY, USA; ⁷Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; ⁸Stanford Cancer Institute, Stanford, CA, USA; ⁹David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ¹⁰University of Iowa Hospitals and Clinics, Iowa City, IA, USA; ¹¹Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy; ¹²St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ¹³Pitié-Salpêtrière Hospital, Paris, France; ¹⁴CHRU Montpellier - Hôpital St Eloi, Montpellier, France; ¹⁵Mayo Clinic Arizona, Phoenix, AZ, USA; ¹⁶BeiGene (Shanghai) Co, Ltd, Shanghai, Chinal; ¹⁷BeiGene USA, Inc, San Mateo, CA, USA; ¹⁸Alfred Hospital and Monash University, Melbourne, VIC, Australia; ¹⁹ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy

ABSTRACT

Introduction: Bruton tyrosine kinase (BTK) inhibitors are highly effective against Waldenström macroglobulinemia (WM), but their effectiveness can be limited by resistance and intolerance. BGB-16673 is a bivalent small molecule that induces BTK degradation via polyubiquitination. CaDAnCe-101 (BGB-16673-101, NCT05006716) is an ongoing, open-label, first-in-human, phase 1/2 study evaluating BGB-16673 monotherapy in patients with a range of B-cell malignancies. Here, early phase 1 results are presented in patients with WM.

Methods: Eligible patients must have confirmed R/R WM (≥2 prior therapies), ECOG performance status 0-2, and adequate organ function. Patients must have previously received an anti-CD20 antibody and, in the US and EU, a covalent BTK inhibitor (cBTKi). BGB-16673 was orally dosed once daily in 28-day cycles. Dose escalation used a Bayesian optimal interval design (6 planned dose levels, 50-600 mg once daily). Primary objectives were to evaluate safety/tolerability (CTCAE v5.0) and to establish the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D). Dose-limiting toxicities (DLTs) were assessed in the first 4 weeks (cycle 1). A secondary objective was the overall response rate (ORR, IWWM-6 consensus criteria), with the first assessment occurring after 4 weeks of treatment.

Results: As of May 24, 2024, 22 patients with WM were enrolled and treated (100 mg, n=4; 200 mg, n=10; 350 mg, n=8). The median age was 73.0 (range, 56-81) years, and median number of prior therapies was 3.5 (range, 2-11), including prior cBTKis (n=22 [100%]), BCL2 inhibitors (n=4 [18%]), and noncovalent BTK inhibitors (ncBTKis; n=3 [14%]). Median follow-up was 4.3 (range, 0.3-21.3) months. Ninety-five percent of patients reported any-grade treatment-emergent adverse events (TEAEs; grade ≥3, 45%; serious, 23%), the most common (≥20%) were neutropenia/neutrophil count decreased (32%; grade ≥3, 23%), contusion (23%; no grade ≥3), and diarrhea (23%; no grade ≥3). The most common grade ≥3 TEAE was neutropenia/neutrophil count decreased. No atrial fibrillation, hypertension, febrile

neutropenia, or major hemorrhage occurred. No patient had a TEAE that led to treatment discontinuation or dose reduction. No DLTs occurred, and the MTD was not reached. One patient (5%) died due to a TEAE (septic shock) related to disease progression. In 21 response-evaluable patients, the ORR (minor response or better) was 90%, the major response rate (partial response or better) was 81%, and the very good partial response or better rate was 14% (Figure). Median time to first response was 0.95 (range, 0.9-3.7) months, with responses deepening over time. Responses were seen at the lowest dose (100 mg, 4/4), in patients previously treated with a cBTKi (19/21) and an ncBTKi (3/3), and in patients discontinued from BTKi due to disease progression (15/17). Responses were observed in patients with and without mutations in *BTK* (with, 5/5; without, 6/8; unknown, 8/8), *MYD88* (with, 18/20; without, 1/1) and *CXCR4* (with, 8/8; without, 11/13).

Conclusions: Early data from this ongoing, first-in-human study demonstrate that the novel BTK degrader BGB-16673 has a tolerable safety profile and shows promising antitumor activity in heavily pretreated patients with BTK inhibitor—exposed R/R WM, including those with *BTK* and *CXCR4* mutations.

Х Ν Χ Χ Υ Χ Χ Ν Χ U Χ Υ Χ Ν Χ Υ Χ U Χ Υ Х Ν Х Ν Х Ν Χ U Χ U Χ U Х Ν Χ Χ U VGPR
PR
MR
SD
PD
NE
→ Ongoin
X Death VGPR
PR
MR
SD
PD
NE
Ongoing Treatm Х U Х U Χ Χ Ν U

49

■ 200 ■ 350

Treatment Duration (Weeks)

73

85

97

109

Figure. Treatment Duration and Response Assessment

cBTKi ncBTKi BCL2i BTKmut

BTK mutation status classified as present (Y), absent (N), or unknown (U).

BCL2i, BCL2 inhibitor; cBTKi, covalent BTK inhibitor; MR, minor response; ncBTKi, noncovalent BTK inhibitor; NE, not evaluable; PD, progressive disease;
PR, partial response; SD, stable disease.

13

Dose Level (mg)