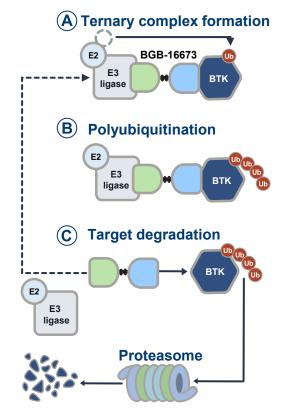
Preliminary Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed or Refractory Waldenström Macroglobulinemia: Results From the Phase 1 CaDAnCe-101 Study

John F. Seymour,¹ Chan Y. Cheah,²⁻⁴ Ricardo D. Parrondo,⁵ John N. Allan,⁶ Judith Trotman,⁷ Ranjana Advani,⁸ Herbert Eradat,⁹ Eric Mou,¹⁰ Pier Luigi Zinzani,¹¹ Masa Lasica,¹² Damien Roos-Weil,¹³ Emmanuelle Tchernonog,¹⁴ Jose Leis,¹⁵ Xiangmei Chen,¹⁶ Kunthel By,¹⁷ Shannon Fabre,¹⁷ Daniel Persky,¹⁷ Amit Agarwal,¹⁷ Constantine S. Tam^{*},¹⁸ Anna Maria Frustaci^{*19}

¹Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia; ²Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ³Medical School, University of Western Australia, Crawley, WA, Australia; ⁴Linear Clinical Research, Nedlands, WA, Australia; ⁵Mayo Clinic - Jacksonville, Jacksonville, FL, USA; ⁶Weill Cornell Medicine, New York, NY, USA; ⁷Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; ⁸Stanford Cancer Institute, Stanford, CA, USA; ⁹David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ¹⁰University of Iowa Hospitals and Clinics, Iowa City, IA, USA; ¹¹Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy; ¹²St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ¹³Pitié-Salpêtrière Hospital, Paris, France; ¹⁴CHRU Montpellier - Hôpital St Eloi, Montpellier, France; ¹⁵Mayo Clinic Arizona, Phoenix, AZ, USA; ¹⁶BeiGene (Shanghai) Co, Ltd, Shanghai, China; ¹⁷BeiGene USA, Inc, San Mateo, CA, USA; ¹⁸Alfred Hospital and Monash University, Melbourne, VIC, Australia; ¹⁹ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy. *Joint senior co-authorship.

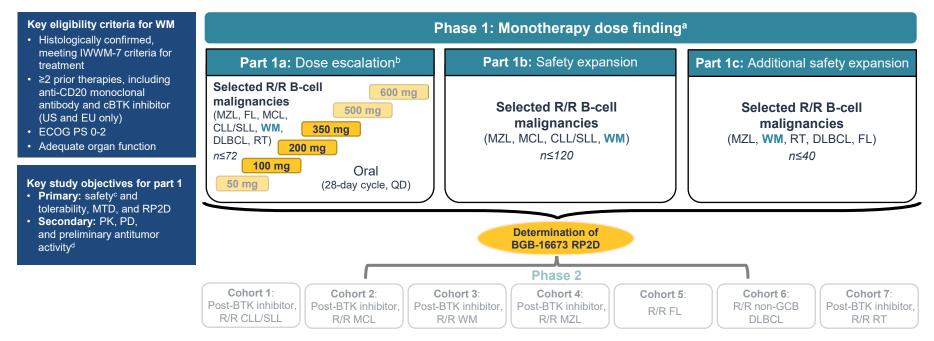
Presented at the 12th International Workshop on Waldenström's Macroglobulinemia (IWWM-12); October 17-19, 2024; Prague, Czech Republic

Disclosures


 John F. Seymour: Advisory role: AbbVie, AstraZeneca, BeiGene, BMS, Genor Bio, Gilead, Janssen, Roche; Research funding: AbbVie, BMS, Janssen, Roche; Speakers bureau; AbbVie, BMS, Roche; Consultancy: TG Therapeutics.

BGB-16673: A Chimeric Degradation Activating Compound (CDAC)

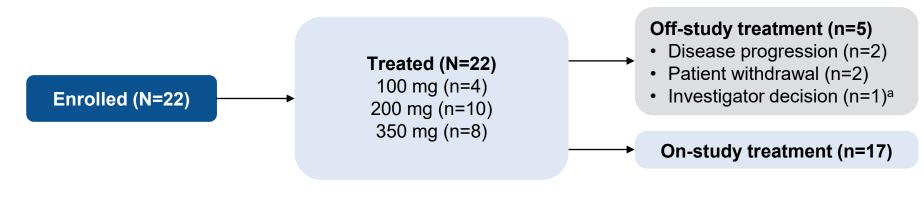
- BTK inhibition is a highly active treatment strategy in patients with WM; however, treatment with some BTK inhibitors is associated with toxicities and/or resistance development^{1,2}
- BGB-16673, a CDAC, is a bivalent molecule comprising a BTKbinding moiety + linker + E3 ligase binder that induces BTK degradation via polyubiquitination³
- In preclinical models, BGB-16673 degraded both wild-type and mutant BTK resistant to covalent and noncovalent BTK inhibitors,^a leading to tumor suppression^{3,4}
- BGB-16673 led to substantial reductions in BTK protein levels in peripheral blood and tumor tissue in the first-in-human study⁵
- Here, safety and efficacy results are presented from patients with R/R WM in the ongoing CaDAnCe-101 study


^a Covalent BTK inhibitor-resistant mutations including C481S, C481F, C481Y, L528W, and T474I; non-covalent BTK inhibitor-resistant mutations including V416L, M437R, T474I, and L528W. R/R, relapsed/refractory; ub, ubiquitin; WM, Waldenström macroglobulinemia. 1. Castillo JJ, et al. Lancet Haematol. 2020;7(11):e827-e837; 2. Ntanasis-Stathopoulos I, et al. Ther Adv Hematol. 2021;12:2040620721989586;

3. Feng X, et al. EHA 2023. Abstract P1239; 4. Wang H, et al. EHA 2023. Abstract P1219; 5. Seymour JF, et al. ASH 2023. Abstract 4401.

Study Design

 CaDAnCe-101 (BGB-16673-101, NCT05006716) is a phase 1/2, open-label, dose-escalation and dose-expansion study evaluating BGB-16673 in adults with R/R B-cell malignancies



^a Data from grey portions of figure are not included in this presentation. ^b Bayesian optimal interval design with 6 dose levels (50-600 mg orally QD). ^c Safety was assessed according to CTCAE v5.0; DLTs were assessed during the first 4 weeks. ^d Responses were assessed per IWWM-6, modified Owen 2013 criteria after 4 weeks.¹

cBTK, covalent BTK; GCB, germinal center B-cell; R/R, relapsed/refractory; RT, Richter transformation; WM, Waldenström macroglobulinemia. 1. Owens RG, et al. Br J Haematol. 2013;160(2):171-176.

Patient Disposition

- As of May 24, 2024, 22 patients with R/R WM enrolled in phase 1 and received BGB-16673
- Seventeen patients (77%) remained on treatment

Median follow-up (range): 4.3 months (0.3-21.3 months)

Patient Characteristics

- Patients had a median of 3.5 (range, 2-11) prior lines of therapy
- The majority of patients (82%) discontinued prior BTK inhibitor therapy due to PD

	Total (N=22)		Total (N=22
Age, median (range), years	73 (56-81)	lgM, median (range), g/L ^d	36.2 (2.8-74.4
Male, n (%)	12 (55)	No. of prior lines of therapy, median (range)	3.5 (2-11)
ECOG PS, n (%)ª		Prior therapy, n (%)	
0	11 (50)	cBTK inhibitor	22 (100)
1	10 (46)	Chemotherapy	20 (91)
Hemoglobin, median (range), g/dL ^ь	10.1 (6.0-13.5)	Proteasome inhibitor	7 (32)
Neutrophils, median (range), 10 ⁹ /L ^b	2.8 (0.2-7.4)	BCL2 inhibitor	4 (18)
Platelets, median (range), 10 ⁹ /L ^b	155.0 (14.0-436.0)		· · ·
Mutation status, n/N with known status (%)		cBTK + BCL2 inhibitors	4 (18)
MYD88 mutation present ^c	20/22 (91)	ncBTK inhibitor	3 (14)
CXCR4 mutation present ^c	8/21 (38)	cBTK + ncBTK + BCL2 inhibitors	0
BTK mutation present	5/13 (38)	Discontinued prior BTK inhibitor due to PD, n (%)	18 (82)

^a 1 patient (5%) had ECOG PS of 2. ^b N=21. ^cBased on case report forms. ^d N=19. cBTK, covalent BTK; ncBTK, noncovalent BTK.

Safety Summary and Frequent Adverse Events

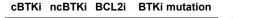
- No DLTs occurred^a
- There were no cases of atrial fibrillation, hypertension, febrile neutropenia, or major hemorrhage

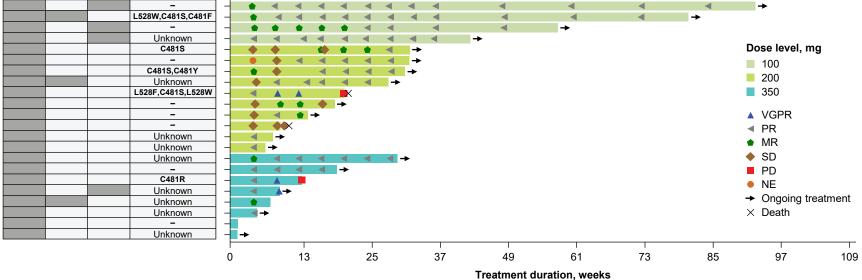
Patients, n (%)	Total (N=22)
Any TEAE	21 (96)
Any treatment related	15 (68)
Grade ≥3	10 (46)
Treatment related grade ≥3	6 (27)
Serious	5 (23)
Treatment related serious	0
Leading to death ^b	1 (5)
Treatment related leading to death	0
Leading to treatment discontinuation	0
Leading to treatment modification	4 (18)
Dose interruption	4 (18)
Dose reduction	0

	Total (N=22) ^c	
Patients, n (%)	All Grade	Grade ≥3
Neutropenia/neutrophil count decreased	7 (32)	5 (23)
Contusion	5 (23)	0
Diarrhea	5 (23)	0
Anemia	4 (18)	2 (9)
Pyrexia	4 (18)	1 (5)
Amylase increased	4 (18)	0
Petechiae	4 (18)	0
Dizziness	4 (18)	0
Rash	4 (18)	0
Thrombocytopenia/platelet count decreased	3 (14)	2 (9)
Lipase increased	3 (14)	1 (5)
Fall	3 (14)	0
Upper respiratory tract infection	3 (14)	0

a DLTs were only assessed during the first 4 weeks of part 1a. ^b Septic shock (200-mg dose group). ^c All-grade TEAEs in ≥10% of patients.

Response by IWWM-6 Criteria¹

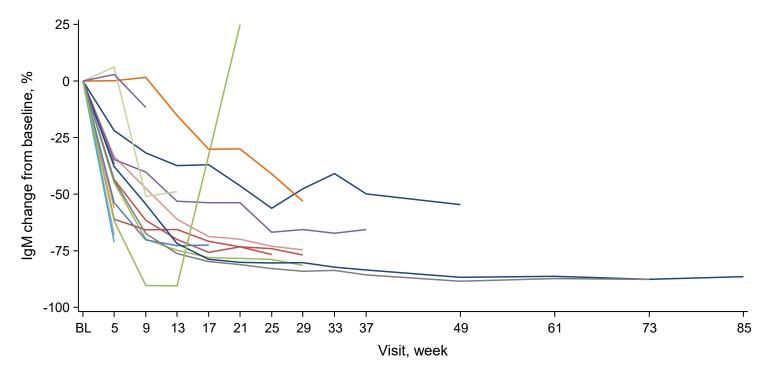

- The ORR was 91% (19/21) in efficacy-evaluable patients with R/R WM
- One patient had an IgM flare and/or rebound 1 week after starting treatment and went on to develop a PR
- Responses were observed at the lowest dose (100 mg; 4/4 patients) and in patients with prior cBTK inhibitor (19/21) or ncBTK inhibitor (3/3)
- Responses also occurred in patients with or without mutations in:
 - BTK (with, 5/5 [100%]; without, 6/8 [75%]; unknown, 8/8 [100%])
 - MYD88 (with, 18/20 [90%]; without, 1/1 [100%])
 - CXCR4 (with, 8/8 [100%]; without, 11/13 [85%])


	Total (N=21)ª
Best overall response, n (%)	
VGPR	3 (14)
PR	14 (67)
MR	2 (10)
SD	1 (5)
Discontinued prior to first assessment	1 (5)
ORR, n (%) ^b	19 (91)
Major response rate, n (%) ^c	17 (81)
Disease control rate, n (%) ^d	20 (95)
Follow-up time, median (range), months ^e	4.3 (0.3-21.3)
Time to first response, median (range), months ^f	1.0 (0.9-3.7)

^a Efficacy-evaluable patients. ^b Proportion of patients who achieved a best overall response of MR or better. ^c Proportion of patients who achieved a best overall response of SD or better. ^e Study follow-up in patients treated with ≥1 dose, N=22. ^f Time to first qualifying response in patients with a best overall response better than SD. cBTK, covalent BTK; IgM, immunoglobulin M; MR, minor response; ncBTK, noncovalent BTK; R/R, relapsed/refractory; VGPR, very good PR; WM, Waldenström macroglobulinemia. 1. Owens RG, et al. *Br J Haematol.* 2013;160(2):171-176.

Treatment Duration and Response

Prior therapy



BTK mutation status absent is shown by (-). BCL2i, B-cell lymphoma 2 inhibitor; BTKi, BTK inhibitor; cBTKi, covalent BTK inhibitor; MR, minor response; mut, mutation; ncBTKi, noncovalent BTK inhibitor; VGPR, very good PR.

Percent Change From Baseline in IgM

• All patients experienced a numerical reduction from baseline in IgM

Conclusions

- In this first-in-human study, the BTK degrader BGB-16673 was generally well tolerated in heavily pretreated R/R WM
 - No DLTs
 - MTD not reached
 - No atrial fibrillation or hypertension reported so far
- Promising antitumor activity, including in patients with:
 - BTK inhibitor–resistant mutations
 - previous exposure to cBTK inhibitors, ncBTK inhibitors, and BCL2 inhibitors
- ORR 91% (19/21 patients)
 - Median time to first response was 1.0 month
 - Responses continue to evolve (median 4.3-month follow-up)
 - Updated data will be presented at future congresses
- With promising clinical activity of BGB-16673 in the treatment of R/R WM, enrollment for the CaDAnCe-101 study is ongoing

Acknowledgments

- The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers.
- This study was sponsored by BeiGene, Ltd. Medical writing support was provided by Kendall Foote, PhD, of Nucleus Global, an Inizio company, and supported by BeiGene