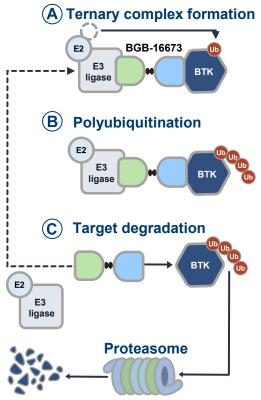


American Society of Hematology Helping hematologists conquer blood diseases worldwide

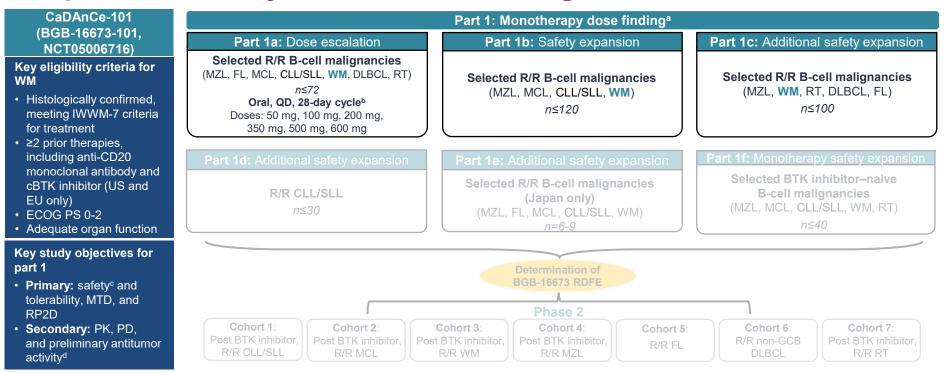
Preliminary Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed or Refractory Waldenström Macroglobulinemia: Results From the Phase 1 CaDAnCe-101 Study

John F. Seymour,¹ Constantine S. Tam,² Chan Y. Cheah,³⁻⁵ Ricardo D. Parrondo,⁶ John N. Allan,⁷ Judith Trotman,⁸ Ranjana Advani,⁹ Herbert Eradat,¹⁰ Pier Luigi Zinzani,¹¹ Masa Lasica,¹² Steven P. Treon,¹³ Xiangmei Chen,¹⁴ Kunthel By,¹⁵ Shannon Fabre,¹⁵ Daniel Persky,¹⁵ Amit Agarwal,¹⁵ Anna Maria Frustaci¹⁶

¹Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia; ²Alfred Hospital and Monash University, Melbourne, VIC, Australia; ³Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ⁴Medical School, University of Western Australia, Crawley, WA, Australia; ⁵Linear Clinical Research, Nedlands, WA, Australia; ⁶Mayo Clinic - Jacksonville, Jacksonville, FL, USA; ⁷Weill Cornell Medicine, New York, NY, USA; ⁸Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; ⁹Stanford Cancer Institute, Stanford, CA, USA; ¹⁰David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ¹¹Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy; ¹²St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ¹³Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ¹⁴BeiGene (Shanghai) Co, Ltd, Shanghai, China; ¹⁵BeiGene USA, Inc, San Mateo, CA, USA; ¹⁶ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy



BGB-16673: A Chimeric Degradation Activating Compound (CDAC)


- BTK inhibitors are effective in WM but are associated with toxicities and/or resistance development^{1,2}
- BGB-16673 is a bivalent CNS-penetrating small molecule that induces BTK degradation by binding specifically to BTK and the E3 ligase³
- In preclinical models, BGB-16673 degraded both wild-type and mutant BTK resistant to cBTK (C481S, C481F, C481Y, L528W, T474I) and ncBTK inhibitors (V416L, M437R, T474I, L528W), leading to tumor suppression^{3,4}
- BGB-16673 led to substantial reductions in BTK protein levels in peripheral blood and tumor tissue⁵
- Here, updated safety and efficacy results are presented in patients with R/R WM in phase 1 of CaDAnCe-101

American Society of Hematology

cBTK, covalent BTK; CNS, central nervous system; ncBTK, noncovalent BTK; ub, ubiquitin. 1. Castillo JJ, et al. *Lancet Haematol*. 2020;7(11):e827-e837; 2. Ntanasis-Stathopoulos I, et al. *Ther Adv Hematol*. 2021;12:2040620721989586; 3. Feng X, et al. EHA 2023. Abstract P1239; 4. Wang H, et al. EHA 2023. Abstract P1219; 5. Seymour JF, et al. ASH 2023. Abstract 4401.

CaDAnCe-101: Phase 1/2, Open-Label, Dose-Escalation/ Expansion Study in R/R B-Cell Malignancies

^a Data from gray portions of the figure are not included in this presentation. ^b Treatment was administered until progression, intolerance, or meeting other criteria for treatment discontinuation. ^c Safety was assessed according to CTCAE v5.0; DLTs were assessed during the first 4 weeks of part 1a. ^d Responses were assessed per IWWM-6, modified Owen 2013 criteria after 4 weeks. cBTK, covalent BTK; GCB, germinal center B cell; RT, Richter transformation.

Baseline Patient Characteristics

Heavily pretreated with high rate of WM mutations

	Total (N=27)		Total (N=27)	
Age, median (range), years	73.0 (56-81)	IgM, median (range), g/L	37.4 (2.8-74.4)	
Male, n (%)	15 (55.6)	No. of prior lines of therapy,	0.0 (0.44)	
ECOG PS, n (%)		median (range)	3.0 (2-11)	
0	14 (51.9)	Prior therapy, n (%)		
1	12 (44.4)	cBTK inhibitor	27 (100)	
2	1 (3.7)	Chemotherapy	25 (92.6)	
Hemoglobin, median (range), g/dL	10.3 (6.0-13.5)	Proteasome inhibitor	9 (33.3)	
Neutrophils, median (range), 10 ⁹ /L	2.7 (0.21-7.43)	BCL2 inhibitor	5 (18.5)	
Platelets, median (range), 10 ⁹ /L	157 (14-455)	ncBTK inhibitor ^b	4 (14.8)	
Mutation status, n/N with known status (%) ^a		Discontinued prior BTK inhibitor due to PD, n (%)	21 (77.8)	
MYD88 mutation present	24/26 (92.3)			
CXCR4 mutation present	12/25 (48.0)			
BTK mutation present	11/25 (44.0)			
TP53 mutation present	13/25 (52.0)			

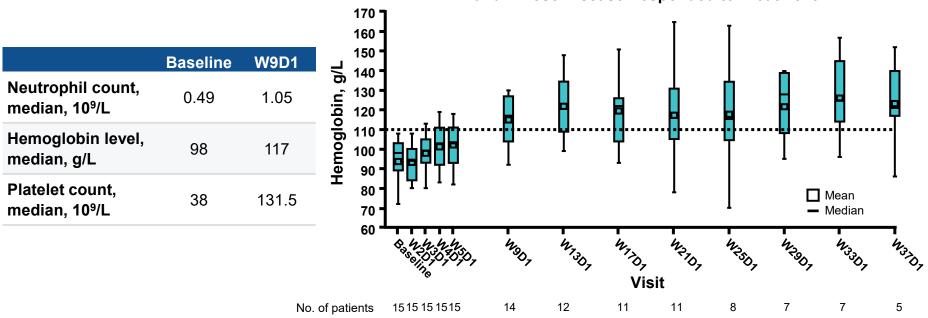
Data cutoff: September 2, 2024.

^a Confirmed by central laboratory. ^b All 4 patients with ncBTK inhibitor exposure were exposed to a cBTK inhibitor. cBTK, covalent BTK; IgM, immunoglobulin M; ncBTK, noncovalent BTK.

Safety Summary and All-Grade TEAEs in ≥10% of All Patients Well tolerated with no AEs leading to treatment discontinuation

- No DLTs^a
- No cases of atrial fibrillation, hypertension, major hemorrhage,^b febrile neutropenia, or pancreatitis
- One patient had IgM flare and/or rebound 1 week after starting treatment (went on to develop PR)

Patients, n (%)	Total (N=27)
Any TEAE	25 (92.6)
Any treatment-related	19 (70.4)
Grade ≥3	11 (40.7)
Treatment-related grade ≥3	7 (25.9)
Serious	7 (25.9)
Treatment-related serious	2 (7.4)
Leading to death ^c	1 (3.7)
Treatment-related leading to death	0
Leading to treatment discontinuation	0


	Total (N=27)
Patients, n (%)	All Grade	Grade ≥3
Neutropenia ^d	8 (29.6)	7 (25.9)
Diarrhea	7 (25.9)	0
Anemia	5 (18.5)	3 (11.1)
Contusion (bruising)	5 (18.5)	0
Rash	5 (18.5)	0
Thrombocytopeniae	5 (18.5)	2 (7.4)
Amylase increased	4 (14.8)	0
Dizziness	4 (14.8)	0
Pyrexia	4 (14.8)	1 (3.7)
Arthralgia	3 (11.1)	0
Constipation	3 (11.1)	0
COVID-19	3 (11.1)	0
Fall	3 (11.1)	0
Headache	3 (11.1)	0
Lipase increased	3 (11.1)	1 (3.7)
Muscle spasms	3 (11.1)	0
Petechiae	3 (11.1)	0
Upper respiratory tract infection	3 (11.1)	0

Data cutoff: September 2, 2024. Median follow-up: 5.0 months (range, 0.8-24.6+).

^a DLTs were only assessed during the first 4 weeks of part 1a. ^b Grade ≥3, serious, or any central nervous system bleeding. ^c Septic shock (200-mg dose level), note in the context of PD. ^d Neutropenia combines preferred terms *neutrophil count decreased* and *neutropenia*. ^e Thrombocytopenia combines preferred terms *platelet count decreased* and *thrombocytopenia*.

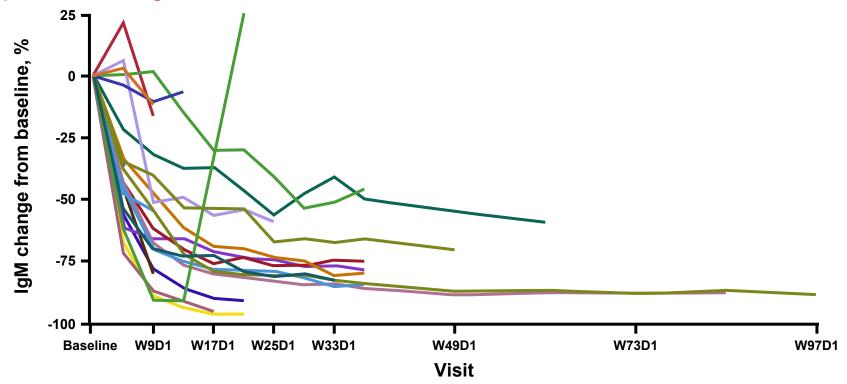
In Patients With Disease Response, There Was Rapid And Significant Improvement of Cytopenias

Hemoglobin Count in Patients With WM Who Had Baseline Anemia and Whose Disease Responded to Treatment

Overall Response Rate

High response rates across all risk groups

 Responses were observed starting at the lowest dose (100 mg; 7/9) and in patients with prior cBTK inhibitor (22/27) or ncBTK inhibitor (4/4)

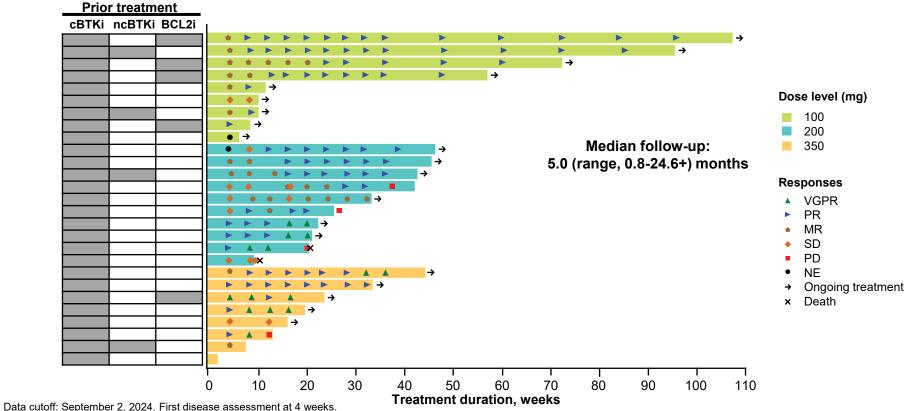

	Total ^a (N=27)	Mutation status, n/N tested (%)	Total ^a
Best overall response, n (%)		BTK	
VGPR	7 (25.9)	Mutated	10/11
PR	13 (48.1)	Unmutated	11/14
	· · ·	Unknown MYD88	1/2 (5
MR	2 (7.4)	Mutated	20/24 (
SD	3 (11.1)	Unmutated	1/2 (5
Not evaluable	1 (3.7)	Unknown	1/1 (1
Discontinued prior to first assessment	1 (3.7)	CXCR4	
ORR, n (%) ^b	22 (81.5)	Mutated	11/12 (
Major response rate, n (%) ^c	20 (74.1)	Unmutated	10/13 (76
Disease control rate (DCR), n (%) ^d	25 (93.0)	Unknown	1/2 (5
Follow-up, median (range), months	5.0 (0.8-24.6)	TP53	40/40 /
Time to first response, median (range), months ^e	1.0 (0.9-3.7)	Mutated Unmutated Unknown	12/13 (9/12 (7 1/2 (5

^a Efficacy-evaluable population. ^b Includes best overall response of MR or better. ^c Includes best overall response of PR or VGPR. ^d Includes best overall response of SD or better. ^e In patients with a best overall response better than SD.

cBTK, covalent BTK; MR, minor response; ncBTK, noncovalent BTK; VGPR, very good partial response.

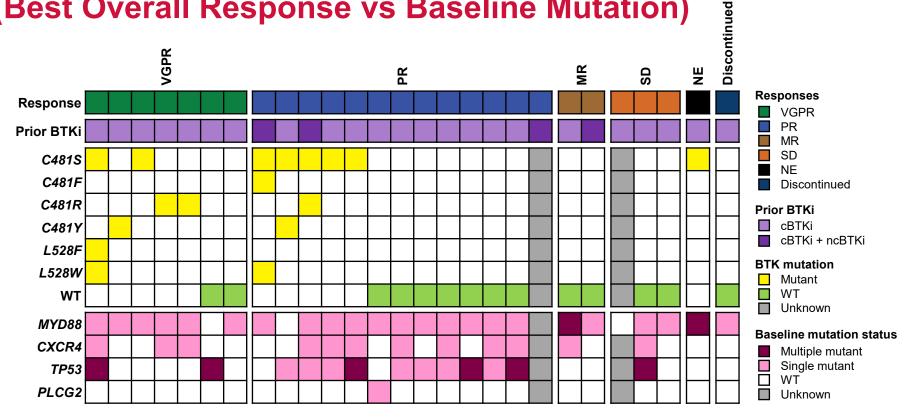
IgM Decreased in All Patients

Rapid decline in IgM at all dose levels



Patient with rapid IgM increase had WM mutations in *BTK*, *MYD88*, *CXCR4*, and *TP53* at baseline, paused treatment for 2-3 weeks due to COVID-19 infection, and developed rapid progression shortly after restarting treatment.

IgM, immunoglobulin M.


Treatment Duration and Response

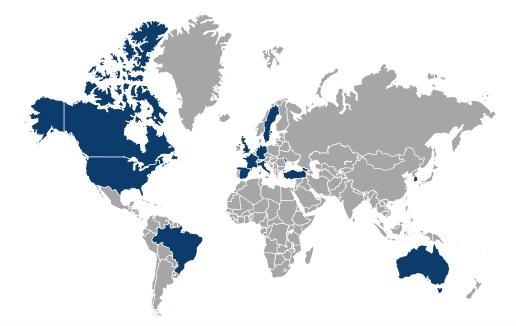
Deepening of responses at all dose levels

cBTKi, covalent BTK inhibitor; MR, minor response; ncBTKi, noncovalent BTK inhibitor; NE, not evaluable; VGPR, very good partial response.

Responses Occurred Regardless of Specific Mutations (Best Overall Response vs Baseline Mutation)

_cBTKi, covalent BTK inhibitor; MR, minor response; ncBTKi, noncovalent BTK inhibitor; NE, not evaluable; VGPR, very good partial response; WT, wild type.

Conclusions



- In phase 1 of CaDAnCe-101, the BTK degrader BGB-16673 was well tolerated in heavily pretreated patients with R/R WM
 - No DLTs occurred; MTD was not reached
 - No atrial fibrillation or hypertension reported
- VGPR 25.9% (7/27 patients); ORR 81.5% (22/27); DCR 93.0% (25/27)
 - Rapid decline in IgM with median time to first response of 1.0 month
 - Rapid improvement in cytopenias seen in patients who experience disease response
 - Responses continue to deepen over time (median 5.0-month follow-up)
- Promising antitumor activity, including in patients with:
 - BTK inhibitor–resistant mutations
 - *TP53* and *CXCR4* mutations
 - Previous exposure to cBTK inhibitors, ncBTK inhibitors, and BCL2 inhibitors
- These data support further investigation of BGB-16673 clinical activity in patients with WM; enrollment in CaDAnCe-101 continues

CaDAnCe-101 Study Sites (Recruiting)

 Enrollment for CaDAnCe-101 phase 1 and phase 2 is ongoing at 100+ study sites across the US, Canada, the UK, France, Georgia, Germany, Italy, Moldova, Spain, Sweden, Turkey, Australia, South Korea, and Brazil

Acknowledgments

- The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers
- They also thank Amber Lussier and Moto Takai for assistance in developing this presentation and Qiming Zhou from Bioinformatics for assistance on the high throughput data analysis
- This study was sponsored by BeiGene, Ltd
- Medical writing was provided by Brittany Gifford, PharmD, of Nucleus Global, an Inizio company, and supported by BeiGene

Corresponding author: John F. Seymour, john.seymour@petermac.org

