Real-World Treatment Patterns of Bruton Tyrosine Kinase Inhibitors in Patients with Mantle Cell Lymphoma in Community Oncology Practices in the United States

Bijal D. Shah,¹ Mei Xue,² Keri Yang,² Sizhu Liu,³ and Boxiong Tang² ¹Moffitt Cancer Center, Tampa, FL, USA; ²BeiGene USA, Inc, San Mateo, CA, USA; and ³formerly with BeiGene USA, Inc, San Mateo, CA, USA

BACKGROUND

- Mantle cell lymphoma (MCL) is a rare and aggressive B-cell malignancy, accounting for 10% of all non-Hodgkin lymphoma subtypes¹
- Three Bruton tyrosine kinase inhibitors (BTKis) have been approved for the treatment of relapsed/refractory (R/R) MCL in the United States: ibrutinib, acalabrutinib, and zanubrutinib

Figure 1. BTKi Approval Timeline in the United States

	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Ib ſ	rutinib US ar November 13	oproval , 2013		Acala (brutinib US a October 31, 20	i pproval Za 017	anubrutinib U November 1	S approval .4, 2019		

• Real-world data on BTKi use in MCL remain limited^{2,3}

OBJECTIVE

• To examine US real-world BTKi treatment pattern, duration, and adherence in patients with MCL

METHODS

• This retrospective observational study used electronic medical record (EMR) data from the Integra Connect database of structured and unstructured fields across 18 US community-based oncology practices with >2000 physician caregivers

Figure 2. Study Design

Study population	BTK i groups		
 Adults with an MCL diagnosis on ≥2 separate dates who started BTKi therapy between 1/1/2019 and 11/30/2021 	 Index date defined as initial use of one of the following BTKis: Acalabrutinib Ibrutinib Zanubrutinib 		
Data collection			

• EMR data were collected to ensure adequate medical history and ≥6-month follow-up period Sociodemographic and clinical characteristics, comorbidities, and treatment patterns were examined for each BTKi group

• Baseline comorbidities were collected ≤90 days prior to the index date based on diagnosis records

Treatment duration was calculated based on EMR and claims until the end of follow-up • Kaplan-Meier analysis was used to compare treatment duration between the BTKi groups

• Discontinuation data were based on unstructured physician notes

Inclusion/Exclusion Criteria

- Age \geq 18 years at index date, with \geq 1 diagnosis of MCL
- ≥1 valid medical or prescription claim 6 months before and after the index date
- Started BTKi treatment between 1/1/2019 and 11/30/2021
- Patients were required to have treatment data available from at least 3 months pre-index date and at least 6 months post-index date

RESULTS

Table 1. Baseline Demographics and Characteristics

Characteristic	Zanubrutinib (n=44)	Acalabrutinib (n=161)	Ibrutinib (n=197)	
Age at index, years				
Mean (SD)*	74 (7.96)	75 (9.46)	70 (9.95)	
Median (Q1-Q3)*	75 (68-79)	76 (69-81)	72 (65-80)	
Min-max	56-89	36-89	36-89	
Age group, n (%)				
<50 years	O (O)	2 (1.2)	6 (3.0)	
50-64 years	8 (18.2)	25 (15.5)	37 (18.8)	
65-79 years	27 (61.4)	81 (50.3)	99 (50.3)	
≥80 years	9 (20.5)	53 (32.9)	61 (30.9)	
Sex, n (%)				
Female	13 (29.5)	47 (29.2)	56 (28.4)	
Male	30 (68.2)	114 (70.8)	141 (71.6)	
Unknown	1 (2.3)	O (O)	O (O)	
Race, n (%)				
White	14 (31.8)	116 (72.0)	129 (65.5)	
Black or African American	2 (4.5)	5 (3.1)	10 (5.1)	
Asian	0 (0)	2 (1.2)	1 (0.5)	
Other	18 (40.9)	38 (23.6)	57 (28.9)	
Ethnicity, n (%)				
Hispanic or Latino	1 (2.3)	9 (5.6)	8 (4.1)	
Not Hispanic or Latino	33 (75.0)	110 (68.3)	152 (77.2)	
Other	10 (22.7)	42 (26.1)	37 (18.8)	
Payer type, n (%)				
Commercial	10 (22.7)	30 (18.6)	48 (24.4)	
Medicare/Medicaid	15 (34.1)	74 (46.0)	76 (38.6)	
Self-pay	O (O)	1 (0.6)	3 (1.5)	
Unknown	1 (2.3)	4 (2.5)	5 (2.5)	
Other	18 (40.9)	52 (32.3)	65 (33.0)	
* <i>P</i> <.05.				

• In 402 patients with MCL identified to start BTKi therapy (44 zanubrutinib; 161 acalabrutinib; 197 ibrutinib), the median (range) age at BTKi therapy start was 75 (56-89) years for the zanubrutinib, 76 (36-89) for the acalabrutinib, and 72 (36-89) for the ibrutinib groups (*P*<.01; **Table 1**) • There were no significant differences between the 3 BTKi groups in other baseline characteristics

• The zanubrutinib group had more comorbidities at baseline than the acalabrutinib group (**Table 2**)

Table 2. Baseline Comorbidities

n (%)	Zanubrutinib (n=44)	Acalabrutinib (n=161)	Ibrutinib (n=197)	
Atrial fibrillation	5 (11.4)	15 (9.3)	12 (6.1)	
Cardiac arrhythmias (other than atrial fibrillation)	9 (20.5)	24 (14.9)	25 (12.7)	
Cardiovascular disease	18 (40.9)	66 (41.0)	63 (32.0)	
Chronic pulmonary disease*	11 (25.0)	27 (16.8)	25 (12.7)	
Diabetes	10 (22.7)	27 (16.8)	28 (14.2)	
GERD	12 (27.3)	41 (25.5)	38 (19.3)	
Hypertension	16 (36.4)	67 (41.6)	71 (36.0)	
Renal disease	9 (20.5)	24 (14.9)	28 (14.2)	

GERD, gastroesophageal reflux disease. * P<.05

BTKi Utilization and Switching Pattern

- Half of patients treated with zanubrutinib used other BTKis in prior therapy, with 31.8% switching from other BTKis to zanubrutinib within 60 days of treatment start

Table 3. BTKi Switching Pattern

n (%)	Zanubrutinib (n=44)	Acalabrutinib (n=161)	lbrutinib (n=197)
Prior BTKi use	22 (50.0)	47 (29.2)	-
Switched BTKi within 60 days	14 (31.8)	27 (16.8)	-
Switched from acalabrutinib	6 (13.6)	-	
Switched from ibrutinib	8 (18.2)	27 (16.8)	
Switched from zanubrutinib	-	1 (0.6)	2 (0.1)

BTKi Treatment Duration and Adherence

- Given the later approval date of zanubrutinib, the zanubrutinib group had a shorter mean follow-up period (493 days) vs the acalabrutinib (701 days) and ibrutinib (746 days) groups
- Nevertheless, patients treated with zanubrutinib had significantly longer median treatment duration (292 days) vs acalabrutinib (259 days) and ibrutinib (149 days) (*P*<.01; **Table 4** and **Figure 3**)

• In the acalabrutinib group, 29% had prior BTKi use (Table 3)

Table 4. BTKi Treatment Duration and Adherence						
Days or n (%)	Zanubrutinib (n=44)	Acalabrutinib (n=161)	Ibrutinib (n=197)			
Treatment duration, days						
Average follow-up	493	701	746			
Median treatment*	292	259	149			
Adherence, n (%)						
>30 days	44 (100)	161 (100)	197 (100)			
>60 days*	40 (91)	137 (85)	137 (70)			
>90 days*	34 (84)	119 (75)	114 (59)			
>180 days*	27 (64)	100 (64)	87 (45)			
>360 days*	16 (53)	67 (45)	58 (31)			
* <i>P</i> <.05.	<i>P</i> <.05.					

Figure 3. Treatment Duration Between BTKi Groups

BTKi Treatment Discontinuation

• The discontinuation rate was lower in the zanubrutinib vs acalabrutinib or ibrutinib groups (**Table 5**)

Table 5. BTKi Discontinuation

n (%)	Zanubrutinib (n=44)	Acalabrutinib (n=161)
Discontinuation	19 (43.2)	83 (51.6)
Discontinuation due to toxicity	6 (13.6)	28 (17.4)
Discontinuation due to no response, disease progression, or worsened comorbidities	8 (18.2)	37 (23.0)

+ Censored Log-rank P<.001

CONCLUSIONS

- Real-world EMR data from US communitybased oncology practices suggested significantly longer treatment duration, better adherence, and a lower discontinuation rate in patients with MCL treated with zanubrutinib compared with acalabrutinib or ibrutinib
- Further analyses on long-term utilization and outcomes are needed upon data maturation

LIMITATION

• This study is subject to the inherent limitations of a retrospective, observational, real-world study using EMR data with potentially inconsistent data documentation

REFERENCES

- 1. McKay P, et al. Br J Haematol. 2018;182(1):46-62.
- 2. Hess LM, et al. Adv Hematol. 2022:v.2022:8262787.
- 3. Mengyang DI, et al. *Blood Adv*. 2022;6(11):3339-3342.

DISCLOSURES

BDS: consulting or advisory role with Adaptive Biotechnologies, Amgen, Autolus, Bristol Myers Squibb/Celgene, Century Therapeutics, Deciphera, Jazz Pharmaceuticals, Kite, Lilly, Novartis, PeproMene, Pfizer, Precision BioSciences; travel accommodations from AstraZeneca, Celgene, Janssen, Kite, Novartis, Pfizer, Seagen, Stemline Therapeutics; honoraria from BeiGene, Gilead Sciences, Pharmacyclics/Janssen, Spectrum/Acrotech; research funding by Incyte, Jazz Pharmaceuticals, Kite/Gilead, SERVIER. MX: employment, stock, and research funding with BeiGene. KY: employment, leadership, stock, research funding, and travel expenses by BeiGene. **SL:** employment with GSK. **BT:** employment and stock with BeiGene.

CORRESPONDENCE

Ibrutinib (n=197 89 (45.2) 26 (13.2)

49 (24.9)

keri.yang@beigene.com

ACKNOWLEDGMENTS

This study was sponsored by BeiGene. Editorial support was provided by ArticulateScience, LLC, and funded by BeiGene

Copies of this presentation obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission from EHA and the authors of this presentation