Safety, pharmacokinetics, and antitumor activity findings from a phase 1b, open-label, dose-escalation and expansion study investigating RAF dimer inhibitor lifirafenib in combination with MEK inhibitor mirdametinib in patients with advanced or refractory solid tumors

Authors:

Benjamin Solomon,¹ Bo Gao,² Vivek Subbiah,³ Michael Millward,⁴ Lee Rosen,⁵ Jayesh Desai,¹ Eric I Sbar,⁶ Neal Collins,⁷ Thuy Hoang,⁶ Xi Song,⁶ Wenlin Shao,⁶ Jaspreet Jaggi,⁷ Badreddin Edris,⁶ Paraneedharan Ramachandran,⁷ Lusong Luo,⁷ Michael Friedlander⁸

Institutions:

- 1. Peter MacCallum Cancer Centre, East Melbourne, Australia
- 2. Blacktown Cancer and Hematology Centre, Sydney, Australia
- 3. MD Anderson, Houston, TX, USA
- 4. Linear Clinical Research, Perth, Australia
- 5. UCLA, Santa Monica, CA, USA
- 6. SpringWorks Therapeutics, Inc., Stamford, CT, USA
- 7. BeiGene, San Mateo, CA, USA
- 8. Prince of Wales Clinical School UNSW and Prince of Wales Hospital, Sydney, Australia

Abstract:

Background: RAF dimer inhibition can suppress RAF-dependent MEK reactivation leading to sustained MAPK pathway inhibition. RAF dimer inhibitor lifirafenib (L) synergized with MEK inhibitor mirdametinib (M) in *RAS*-mutated cancer models. In this ongoing Phase 1b study of L+M in patients (pts) with advanced/refractory solid tumors harboring MAPK pathway aberrations, we investigate preliminary safety, PK, and efficacy.

Methods: Pts were enrolled by a 3+3 design and treated with L (15-20 mg QD) + M (2-4 mg QD or BID) across 9 dose levels (DLs). Primary objectives were to evaluate

safety/tolerability, estimate MTD, and identify recommended Phase 2 dose (RP2D). Tumor responses were investigator assessed using RECIST v1.1. AEs were graded per NCI CTCAE v5.0.

Results: Table 1 presents demographic, efficacy, and safety results as of 01 Sep 2022. Objective responses (all PRs) were achieved in 15/54 (27.8%) efficacy-evaluable pts, including 10/17 low-grade serous ovarian cancer (LGSOC) (58.8%; median exposure ~23 mo), 2 NSCLC (1 NRAS Q61K, 1 BRAF-V600E), 2 endometrial cancer (1 BRAF ZC3HAv1 fusion, 1 KRAS G12A), and 1 LG serous adenocarcinoma of Mullerian origin (KRAS G12V). For L and M, plasma maximum drug concentration (C_{max}) and exposure (AUC) were comparable to that of each compound at the same DL in monotherapy studies, suggesting low likelihood of drug-drug interaction. L+M was generally well tolerated, with limited DLTs and discontinuations. There were 2 deaths due to TEAEs considered unrelated to L+M. The MTD/RP2D were not yet determined.

Conclusions: L+M demonstrated a favorable safety profile and showed antitumor activity in pts with various *KRAS*, *NRAS*, and *BRAF* mutations across several solid tumor types, including LGSOC, NSCLC, and endometrial cancer. The combination warrants further clinical investigation.

Demographics (N=56)			
Age (y), median (range)	59.5 (29-78)		
ECOG PS 0/1, n (%)	56 (100.0)		
Prior lines of therapy, median (range)	1 (1-6)		
Efficacy Set (N=54), n (%)			
	LGSOC (n=17)	Other	All malignancies (n=54)
		than	
		LGSOC	
		(n=37)	
ORR	10 (58.8)	5 (13.5)	15 (27.8)
PR	10 (58.8)	5 (13.5)	15 (27.8)
SD	6 (35.3)	18 (48.6)	24 (44.4)
DCR (CR+PR+SD)	16 (94.1)	23 (62.2)	39 (72.2)
Safety Set (N=56), n (%)			
TEAE ^a	55 (98.2)		
SAE	23 (41.1)		
Grade 3 TEAE	24 (42.9)		
TEAE leading to treatment discontinuation	3 (5.4)		
DLT	6 (10.7)		

Table 1

CR, complete response; DCR, disease control rate; DLT, dose-limiting toxicity; ECOG PS, Eastern Cooperative Oncology Group performance status; LGSOC, low-grade serous ovarian cancer; ORR, objective response rate; PR, partial response; SAE, serious adverse event; SD, stable disease; TEAE, treatment-emergent adverse event. ^a Commonly reported (>40%): fatigue (55.4%), dermatitis acneiform (46.4%), and diarrhea (44.6%).