

CONGRESSO NAZIONALE SIE Società Italiana di Ematologia

Zanubrutinib (Zanu) vs Bendamustina + Rituximab (BR) in Pazienti Con Leucemia Linfatica Cronica/Linfoma a Piccoli Linfociti (LLC/LSL) Naive al Trattamento: Follow-Up Esteso Dello Studio SEQUOIA

Alessandra Tedeschi

ROMA, 23-25 Ottobre 2023

Marriott Park Hotel

Speaker Disclosures

Alessandra Tedeschi is on the advisory board/speaker bureau for AbbVie, AstraZeneca, BeiGene and Janssen

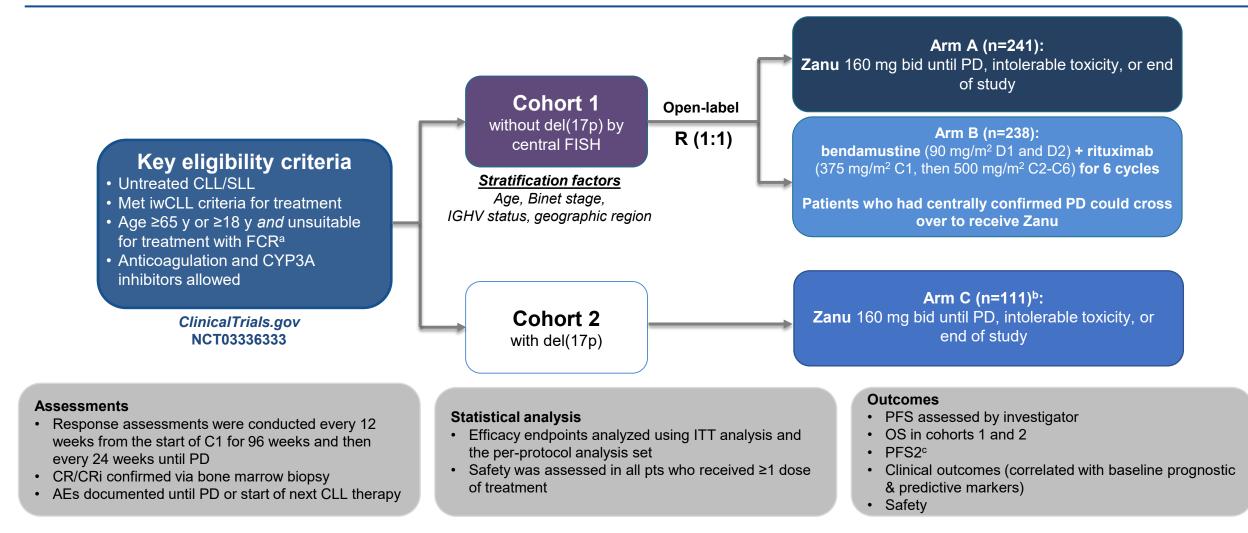
Presented at the 50th SIE National Congress; October 23-25, 2023; Rome, Italy. Abstract 155. Data originally presented at the EHA 2023 Hybrid Congress; June 8-15, 2023; Frankfurt, Germany. Abstract P639.

Correspondence: Alessandra Tedeschi; alessandra.tedeschi@ospedaleniguarda.it

Author List and Affiliations

Talha Munir,¹ Mazyar Shadman,² Tadeusz Robak,³ Jennifer R. Brown,⁴ Brad S. Kahl,⁵ Paolo Ghia,⁶ Krzysztof Giannopoulos,^{7,8} Martin Šimkovič,⁹ Anders Österborg,¹⁰ Luca Laurenti,¹¹ Patricia Walker,¹² Stephen Opat,¹³ Hanna Ciepluch,¹⁴ Richard Greil,¹⁵⁻¹⁷ Merit Hanna,¹⁸ Monica Tani,¹⁹ Marek Trněný,²⁰ Danielle Brander,²¹ Ian W. Flinn,²² Sebastian Grosicki,²³ Emma Verner,²⁴ Alessandra Tedeschi,²⁵ Sophie De Guibert,²⁶ Gayane Tumyan,²⁷ Kamel Laribi,²⁸ José Antonio García-Marco,²⁹ Jian-Yong Li,³⁰ Tian Tian,³¹ Vanitha Ramakrishnan,³¹ Yu Liu,³¹ Andy Szeto,³¹ Jason Paik.³¹ Aileen Cohen.³¹ Constantine S. Tam.³² Woiciech Jurczak³³ ¹Haematology, Haematological Malignancy Diagnostic Service (HMDS), St James's Institute of Oncology, Leeds, UK ²Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA ³Medical University of Łódź, Łódź, Poland ⁴Dana-Farber Cancer Institute, Boston, MA, USA ⁵Washington University School of Medicine, St Louis, MO, USA ⁶Strategic Research Program on Chronic Lymphocytic Leukemia. Division of Experimental Oncology. IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele. Milan. Italy ⁷Experimental Hematooncology Department, Medical University of Lublin, Lublin, Poland ⁸Hematology Department, St John's Cancer Centre, Lublin, Poland ⁹University Hospital Hradec Králové, Hradec Králové, Czech Republic ¹⁰Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden ¹¹Fondazione Policlinico Universitario A. Gemelli IRCCS. Rome. Italy ¹²Peninsula Health and Peninsula Private Hospital, Frankston, Melbourne, VIC, Australia ¹³Monash Health and Clinical Haematology Unit, Monash University, Clayton, VIC, Australia ¹⁴Department of Hematology, Copernicus Regional Oncology Centre, Gdansk, Poland ¹⁵Third Medical Department With Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria ¹⁶Salzburg Cancer Research Institute Center for Clinical Cancer and Immunology Trials, Salzburg, Austria ¹⁷Cancer Cluster Salzburg, Salzburg, Austria ¹⁸Department of Haematology, Waitemata District Health Board, Takapuna, New Zealand ¹⁹Hematology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy ²⁰First Department of Medicine, First Faculty of Medicine, Charles University, General Hospital, Prague, Czech Republic ²¹Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, USA ²²Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA ²³Department of Hematology and Cancer Prevention, School of Public Health, Silesian Medical University, Katowice, Poland ²⁴Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia ²⁵Department of Hematology, Azienda Socio Sanitaria Territoriali Grande Ospedale Metropolitano Niguarda, Milan, Italy ²⁶Hôpital de Pontchaillou, Rennes, France ²⁷Department of Chemotherapy of Hemoblastosis, Blokhin Russian Cancer Research Center, Moscow, Russia ²⁸Hematology Department, Centre Hospitalier du Mans, Le Mans, France ²⁹Laboratorio de Citometría de Flujo, Servicio de Hematología y Hemoterapia, Hospital Universitario de Getafe, Getafe, Madrid, Spain ³⁰Department of Hematology, Jiangsu Province Hospital, Nanjing, China ³¹BeiGene USA, San Mateo, CA, USA ³²Alfred Health and Monash University, Melbourne, VIC, Australia ³³Maria Skłodowska-Curie National Research Institute of Oncology, Krakow, Poland

Background


- BTK inhibitors have altered the CLL/SLL treatment landscape (prolonged PFS and OS vs chemoimmunotherapy)¹
- Zanubrutinib is a next-generation BTK inhibitor that is:
 - Designed to minimize off-target binding and limit associated side effects²
 - Approved in the US, EU, and China to treat CLL and in the US and China to treat SLL (the EMA considers SLL to be the same disease as CLL)³⁻⁵
- SEQUOIA (NCT03336333) study results in treatment-naive patients with CLL/SLL⁶
 - Median follow-up: 26.2 months
 - Superior PFS in patients without del(17p) who received zanubrutinib vs BR (HR, 0.42; 95% CI, 0.28-0.63; 2-sided P<.0001)
 - Similar results in patients with del(17p) who received zanubrutinib monotherapy
 - Independent data monitoring committee determined that the SEQUOIA study met its primary endpoint at the interim analysis

This extended follow-up of the SEQUOIA study reports updated efficacy and safety results after 18 months of additional follow-up (data cutoff: 31 October 2022), with a median follow-up of 43.7 months in cohort 1 and 47.9 months in cohort 2

BR, bendamustine plus rituximab; BTK, Bruton tyrosine kinase; del(17p), deletion in chromosome 17p; EMA, European Medicines Agency.

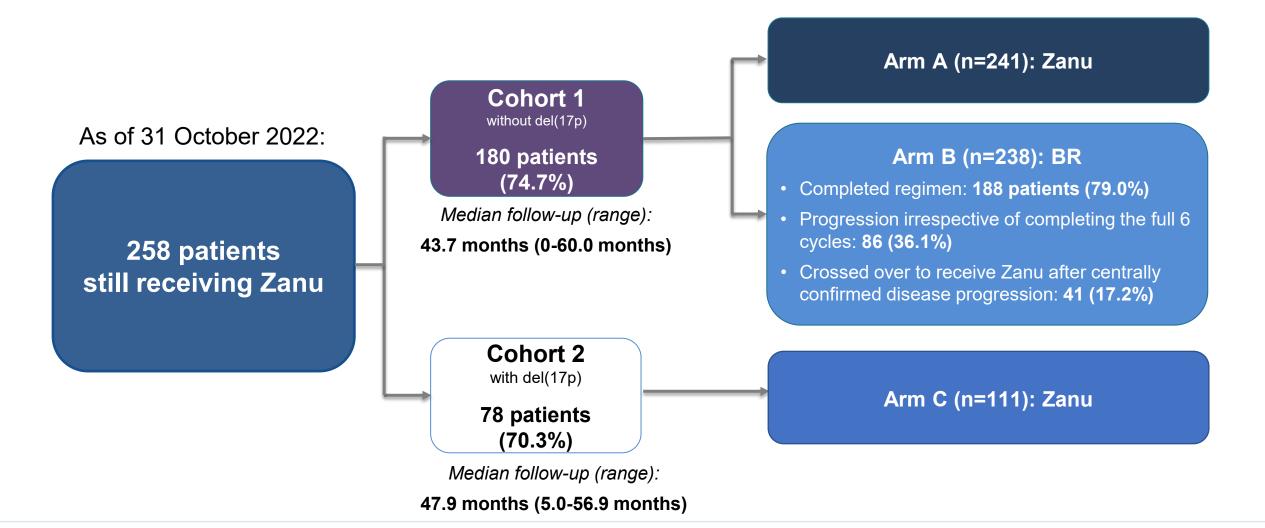
1. Scheffold A, et al. *Curr Oncol Rep.* 2020;22(2):16; 2. Guo Y, et al. *J Med Chem.* 2019;62(17):7923-7940; 3. Brukinsa (zanubrutinib). Package insert. BeiGene USA; 2023; 4. Brukinsa (zanubrutinib). Summary of product characteristics. BeiGene Ireland Ltd; 2021; 5. Beigene. BeiGene receives new approvals for BRUKINSA® (zanubrutinib) in China. Accessed 22 May 2023. https://ir.beigene.com/news/beigene-receives-new-approvals-for-brukinsazanubrutinib-in-china/7e5cd979-7835-4263-8dde-f426c721fb3e/; 6. Tam CS, et al. *Lancet Oncol.* 2022;23(8):1031-1043.

Methods

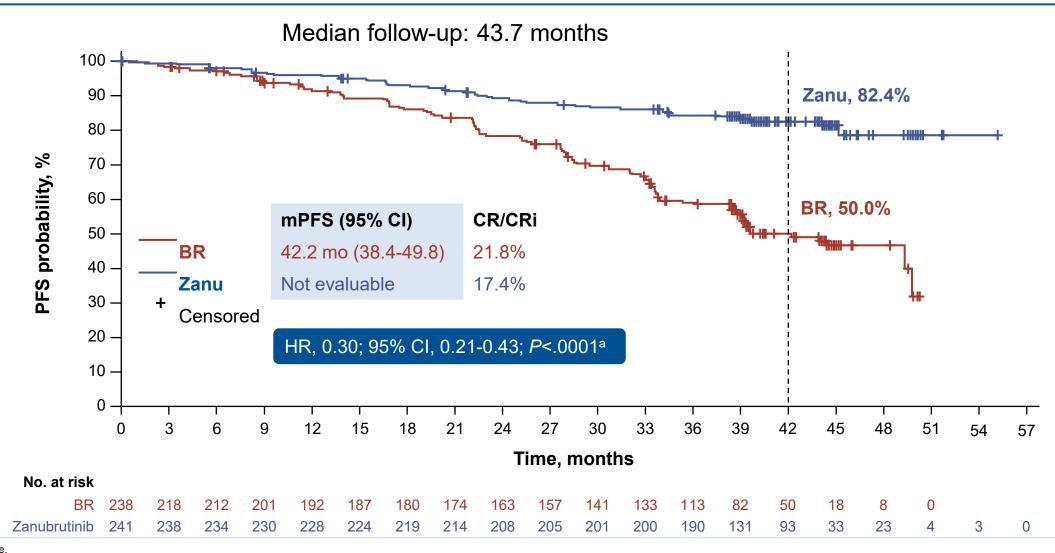
AE, adverse event; bid, twice daily; C, cycle; CR, complete response; CRi, complete response with incomplete hematologic recovery; CYP3A, cytochrome P450 3A; D, day; del(17p), deletion in chromosome 17p; FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence in situ hybridization; IGHV, immunoglobulin heavy chain variable region; ITT, intent to treat; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; PFS2, progression-free survival 2.

^a Defined as Cumulative Illness Rating Scale score of >6, creatinine clearance of <70 mL/min, or a history of previous severe infection or multiple infections within the last 2 years; ^b One patient without del(17p) was misassigned to Cohort 2 and was excluded from the efficacy analysis; ^c Defined as the time from randomization to death or the date of progression on the next line of therapy subsequent to study treatment.

Tam CS, et al. Lancet Oncol. 2022;23(8):1031-1043.

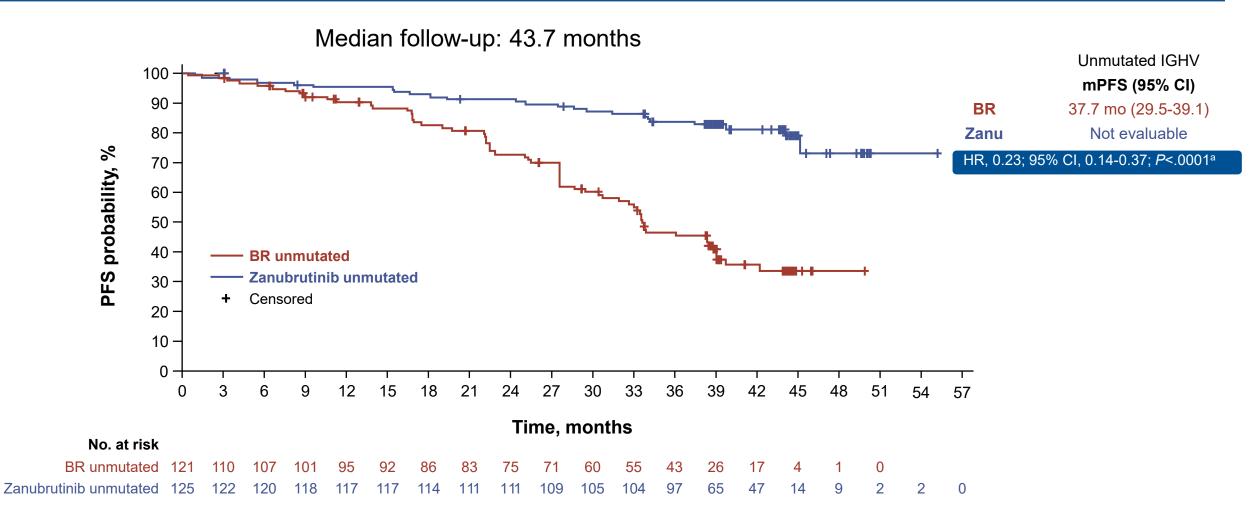

Patient Baseline Demographics

	Cohort patients witho	Cohort 2: patients with del(17p)	
	Arm A: Zanu (n=241)	Arm B: BR (n=238)	Arm C: Zanu (n=111)ª
Age, median (range), years	70 (40-86)	70 (35-87)	71 (42-87)
Age ≥65 years, n (%) ^ь	198 (82)	195 (82)	95 (86)
Male, n (%)	154 (6)	144 (61)	79 (71)
ECOG PS 2, n (%)	15 (6)	20 (8)	4 (13)
Geographic region, n (%)			
North America	34 (14)	28 (12)	12 (11)
Europe	174 (72)	172 (72)	52 (47)
Asia-Pacific	33 (14)	38 (16)	47 (42)
Binet stage C, n (%) ^c	70 (29)	70 (29)	39 (35)
Bulky disease ≥5 cm, n (%)	69 (29)	73 (31)	44 (40)
Cytopenia at baseline, n (%) ^d	102 (42)	110 (46)	61 (55)
Unmutated IGHV gene, n/N (%) ^e	125/234 (53)	121/231 (52)	67/103 (65)
del(11q), n (%)	43 (18)	46 (19)	37 (33)
TP53 mutation, n/N (%)	15/232 (6)	13/223 (6)	47/109 (43)
Complex karyotype (≥3 abnormalities), n/N (%) ^f	23/164 (14)	22/161 (14)	33/88 (38)


del(11q), deletion in chromosome 11q; del(17p), deletion in chromosome 17p; ECOG PS, Eastern Cooperative Oncology Group performance status; IGHV, immunoglobulin heavy chain variable region; TP53, tumor protein 53.

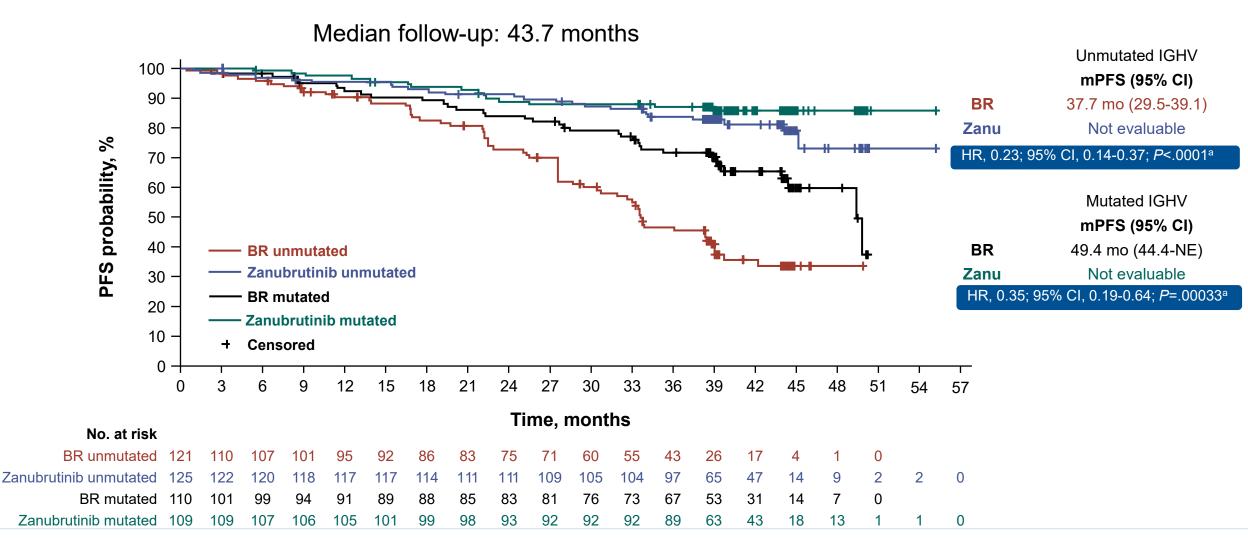
^a 1 pt without del(17p) was misassigned to Cohort 2 and was excluded from the efficacy analysis; ^b Pts aged ≥75 years included 63 patients in Arm A (26%), 53 pts in Arm B (22%), and 27 pts in Arm C (24%); ^c Pts with SLL had Binet stage calculated as if they had CLL; ^d Defined as anemia (hemoglobin ≤110 g/L), thrombocytopenia (platelets ≤100×10⁹/L), or neutropenia (absolute neutrophil count ≤1.5×10⁹/L); ^e 22 pts had insufficient RNA quantity/quality for polymerase chain reaction amplification of IGHV for sequencing or had missing data; ^f Pts with missing/insufficient RNA quantity/quality were omitted from the complex karyotype analysis.

Patient Disposition


Cohort 1: PFS in Patients Without del(17p)

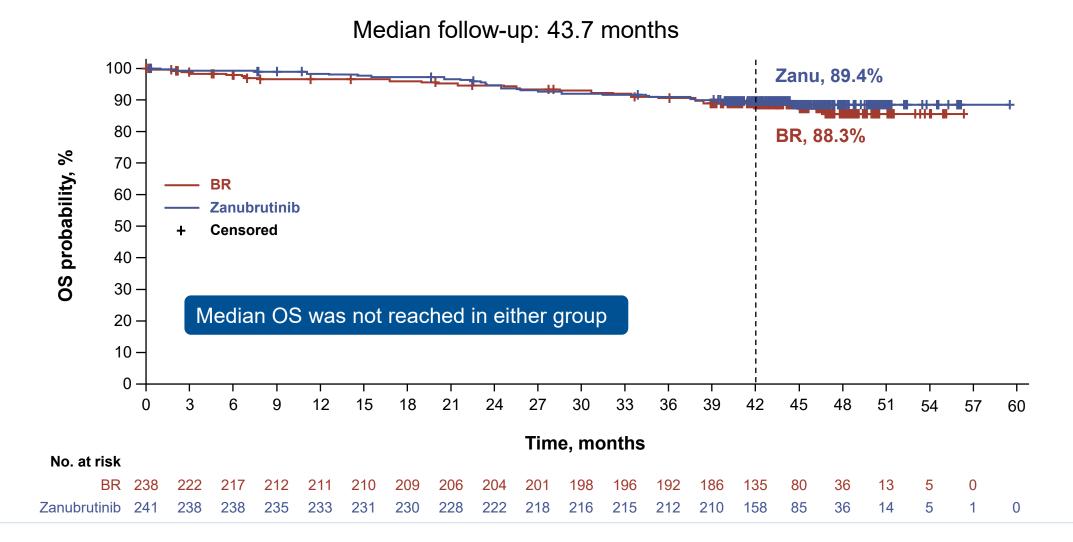
^a Descriptive P value.

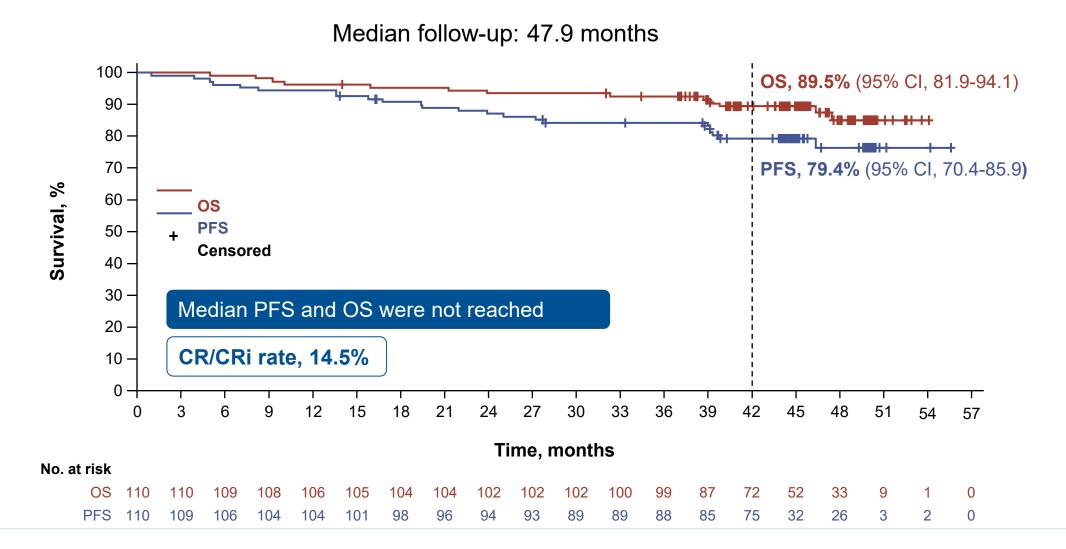
CR, complete remission; CRi, complete remission with incomplete hematologic recovery; del(17p), deletion in chromosome 17p.


Cohort 1: PFS in Patients Without del(17p) by IGHV Status

^a Descriptive P value.

BR, bendamustine plus rituximab; del(17p), deletion in chromosome 17p; HR, hazard ratio; IGHV, immunoglobulin heavy chain variable region; mPFS, median progression-free survival; NE, not evaluable; PFS, progression-free survival; zanu, zanubrutinib.


Cohort 1: PFS in Patients Without del(17p) by IGHV Status


^a Descriptive P value.

BR, bendamustine plus rituximab; del(17p), deletion in chromosome 17p; HR, hazard ratio; IGHV, immunoglobulin heavy chain variable region; mPFS, median progression-free survival; NE, not evaluable; PFS, progression-free survival; zanu, zanubrutinib.

Cohort 1: OS in Patients Without del(17p)

Cohort 2: PFS and OS in Patients With del(17p)28

Treatment-Emergent and Posttreatment AEIs in Cohorts 1 and 2 (Any Grade and Grade ≥3)

	Pa	Patients without del(17p)				Patients with del(17p)	
		Arm A: Zanu (n=240)		Arm B: BR (n=227)		Arm C: Zanu (n=111)	
AEIs, n (%)ª	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	
Infections	175 (72.9)	57 (23.8)	142 (62.6)	50 (22.0)	89 (80.2)	30 (27.0)	
Bleeding	117 (48.8)	14 (5.8)	28 (12.3)	4 (1.8)	64 (57.7)	6 (5.4)	
Other malignancies	45 (18.8)	22 (9.2)	28 (12.3)	11 (4.8)	27 (24.3)	8 (7.2)	
Hypertension	42 (17.5)	22 (9.2)	31 (13.7)	15 (6.6)	15 (13.5)	7 (6.3)	
Diarrhea	41 (17.1)	4 (1.7)	32 (14.1)	5 (2.2)	22 (19.8)	1 (0.9)	
Neutropenia	40 (16.7)	30 (12.5)	129 (56.8)	116 (51.1)	21 (18.9)	18 (16.2)	
Arthralgia	37 (15.4)	2 (0.8)	23 (10.1)	1 (0.4)	26 (23.4)	1 (0.9)	
Anemia	17 (7.1)	1 (0.4)	47 (20.7)	5 (2.2)	7 (6.3)	0 (0)	
Thrombocytopenia	15 (6.3)	5 (2.1)	41 (18.1)	18 (7.9)	9 (8.1)	2 (1.8)	
Atrial fibrillation/flutter	12 (5.0)	3 (1.3)	6 (2.6)	3 (1.3)	7 (6.3)	5 (4.5)	
Myalgia	9 (3.8)	0 (0)	4 (1.8)	0 (0)	8 (7.2)	1 (0.9)	
Opportunistic infection	6 (2.5)	1 (0.4)	4 (1.8)	3 (1.3)	1 (0.9)	1 (0.9)	

Exposure-Adjusted Incidence Rates (EAIRs) for Select AEIs

- EAIRs for hypertension were similar between arms and lower than previously reported
- EAIR in units of persons per 100 person-months was calculated as follows:

(Number of patients who experienced a TEAE of interest/total treatment exposure time in months for all patients) x 100

 An EAIR of 0.5 persons per 100 person-months indicates that if 1000 patients were each treated for a month, 5 would be estimated to experience the TEAE of interest

	Patients with	out del(17p)	Patients with del(17p)	
AEIs ^a	Arm A: Zanu (n=240)	Arm B: BR (n=227)	Arm C: Zanu (n=111)	
Atrial fibrillation and flutter	0.13	0.08	0.15	
Hemorrhage	2.02	0.40	2.73	
Major hemorrhage	0.20	0.05	0.20	
Hypertension	0.49	0.45	0.35	

Conclusions

- The extended follow-up in the SEQUOIA study showed that the efficacy of Zanu was maintained in previously untreated patients with CLL/SLL without del(17p) and that PFS rates were similar in patients with and without del(17p); OS rates were high in all arms of the trial
- Additionally, patients with mutated IGHV who received Zanu demonstrated improvements in PFS with extended follow-up vs those who received BR (2-sided P=.00033^a); patients with unmutated IGHV who received zanubrutinib vs those who received BR maintained the PFS benefit that was observed at the interim analysis (2-sided P<.0001^a)
- Zanu was well tolerated over this extended treatment period, and safety results aligned with the known profile of BTK inhibitors; atrial fibrillation events remained low
- The results of this extended follow-up in the SEQUOIA study support the use of Zanu as a valuable first-line treatment option for CLL/SLL in elderly patients, those with comorbidities, and those with del(17p)

BR, bendamustine plus rituximab; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; del(17p), deletion in chromosome 17p; IGHV, immunoglobulin heavy chain variable region; OS, overall survival; PFS, progression-free survival; SLL, small lymphocytic lymphoma. ^a Descriptive P value.

Acknowledgments

- The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers
- This study was sponsored by BeiGene, Ltd
- Medical writing support was provided by Nancy Tang, PharmD, and Apurva Dave, PhD, of Medical Expressions and was funded by BeiGene, Ltd