

Speaker Disclosures

Alessandra Tedeschi is on the advisory board/speaker bureau for AbbVie, AstraZeneca, BeiGene and Janssen

Presented at the 50th SIE National Congress; October 23-25, 2023; Rome, Italy. Abstract C047.

Data originally presented at the 2022 American Society of Hematology (ASH) Annual Meeting; December 10-13, 2022;

New Orleans, LA, USA. Abstract LBA-6.

Correspondence: Alessandra Tedeschi; alessandra.tedeschi@ospedaleniguarda.it

Author List and Affiliations

Alessandra Tedeschi,¹ Jennifer R. Brown,² Barbara Eichhorst,³ Peter Hillmen,⁴ Nicole Lamanna,⁵ Susan M. O'Brien,⁶ Constantine S. Tam,⁷ Lugui Qiu,⁸ Maciej Kaźmierczak,⁹ Wojciech Jurczak,¹⁰ Keshu Zhou,¹¹ Martin Šimkovič,¹² Jiri Mayer,¹³ Amanda Gillespie-Twardy,¹⁴ Alessandra Ferrajoli,¹⁵ Peter S Ganly,¹⁶ Robert Weinkove,¹⁷ Sebastian Grosicki,¹⁸ Andrzej Mital,¹⁹ Tadeusz Robak,²⁰ Anders Osterborg,²¹ Habte A. Yimer,²² Tommi Salmi,²³ Megan (Der Yu) Wang,²⁴ Lina Fu,²⁴ Jessica Li,²⁴ Kenneth Wu,²⁴ Aileen Cohen,²⁴ Mazyar Shadman²⁵

¹Great Metropolitan Hospital Niguarda, Piazza Ospedale, Milan, Italy

²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

³Department I of Internal Medicine, University of Cologne, Cologne, Germany and Center for Integrated Oncology, Cologne, Germany

⁴St James's University Hospital, Leeds, UK

⁵Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA

⁶Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA

⁷The Alfred Hospital, Melbourne, VIC, Australia and Monash University, Melbourne, VIC, Australia

⁸Department of Lymphoma and Myeloma, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China

⁹Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland

¹⁰MSC National Research Institute of Oncology, Krakow, Poland

¹¹First Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China

¹²⁴th Department of Internal Medicine – Haematology, Faculty of Medicine in Hradec Kráľové, University Hospital and Charles University in Prague, Hradec Kralove, Czech Republic

¹³Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic and Faculty of Medicine, Masaryk University, Brno, Czech Republic

¹⁴Blue Ridge Cancer Care, Roanoke, VA, USA

¹⁵Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

¹⁶Department of Haematology, Christchurch Hospital, Christchurch, New Zealand

¹⁷Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand and Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand

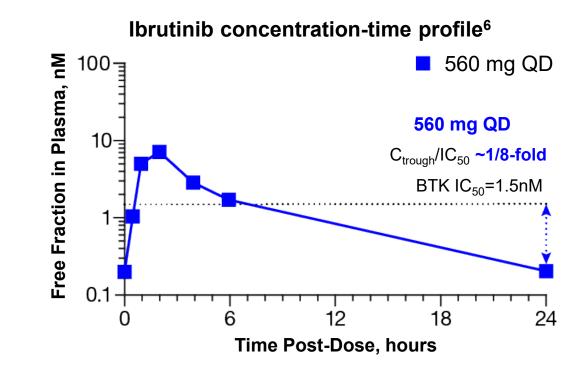
¹⁸Department of Hematology and Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland

¹⁹Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland

²⁰Medical University of Lodz, Lodz, Poland

²¹Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden and Department of Hematology, Karolinska University Hospital, Stockholm, Sweden

²²Texas Oncology-Tyler/US Oncology Research, Tyler, TX, USA

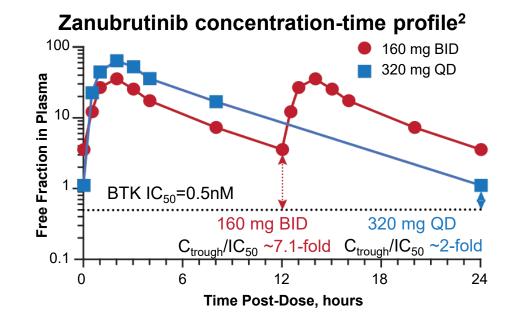

²³BeiGene International, GmbH, Basel, Switzerland

²⁴BeiGene (Beijing) Co, Ltd, Beijing, China and BeiGene USA, Inc, San Mateo, CA, USA

²⁵Fred Hutchinson Cancer Center, Department of Medicine, University of Washington, Seattle, WA, USA

Bruton Tyrosine Kinase Inhibition in CLL: Background

- BCR signaling is required for tumor expansion and proliferation in CLL and B-cell lymphomas¹
 - BCR signaling is dependent on BTK
- Ibrutinib, a first-in-class, covalent BTK inhibitor, has transformed CLL therapy; however, it has properties that limit use
 - Treatment discontinuation from toxicities has been reported in 16%-23% of patients²⁻⁵
 - Exposure coverage between dosing intervals falls below IC₅₀ and variable BTK occupancy at trough has been observed


BCR, B-cell antigen receptor; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; C_{trough}, trough concentration; IC₅₀, half maximal inhibitory concentration; QD, daily.

1. Singh SP, et al. Molecular Cancer. 2018; 17:57. 2. Sharman JP, et al. Blood. 2017;130(suppl 1):4060. 3. Mato AR, et al. Haematologica. 2018;103(5):874-879. 4. Munir T, et al. Am J Hematol. 2019;94(12):1353-1363. 5. Ghia P, et al. EHA Abstract EP636 2021.

6. Tam CS et al. Expert Rev Clin Pharmacol. 2021;14:11, 1329-1344.

Zanubrutinib: Differentiating Features and Background

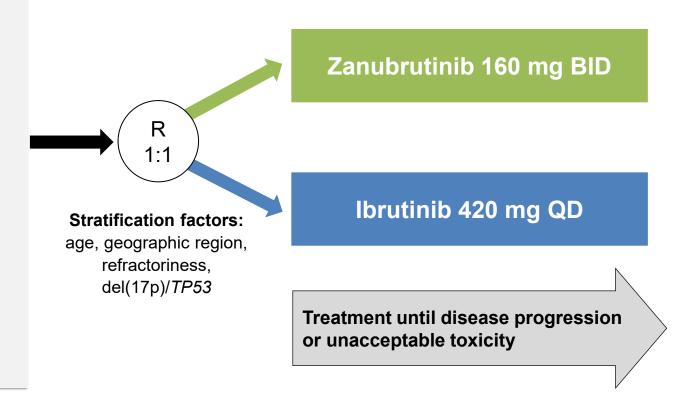
- Zanubrutinib is a next-generation BTKi
 - Zanubrutinib was designed to have greater BTK specificity than ibrutinib
 - Zanubrutinib has exposure coverage above IC₅₀
 - Higher drug-concentration/IC₅₀ ratios would be expected to lead to more sustained and complete BTK inhibition to improve efficacy
- Zanubrutinib has demonstrated superior PFS by IRC over chemoimmunotherapy (SEQUOIA) in treatmentnaive CLL/SLL patients without del(17p)¹

BID, twice daily; BTK, Bruton tyrosine kinase; BTKi, Bruton tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; del(17p), deletion in chromosome 17p; IC50, half maximal inhibitory concentration; IRC, independent review committee; PFS, progression-free survival; QD, daily; SLL, small lymphocytic lymphoma.

1. Tam CS, et al. Lancet Oncol. 2022;23(8):1031-1043. 2. Ou YC, et al Leukemia & Lymphoma. 2021; 62(11):2612-2624.

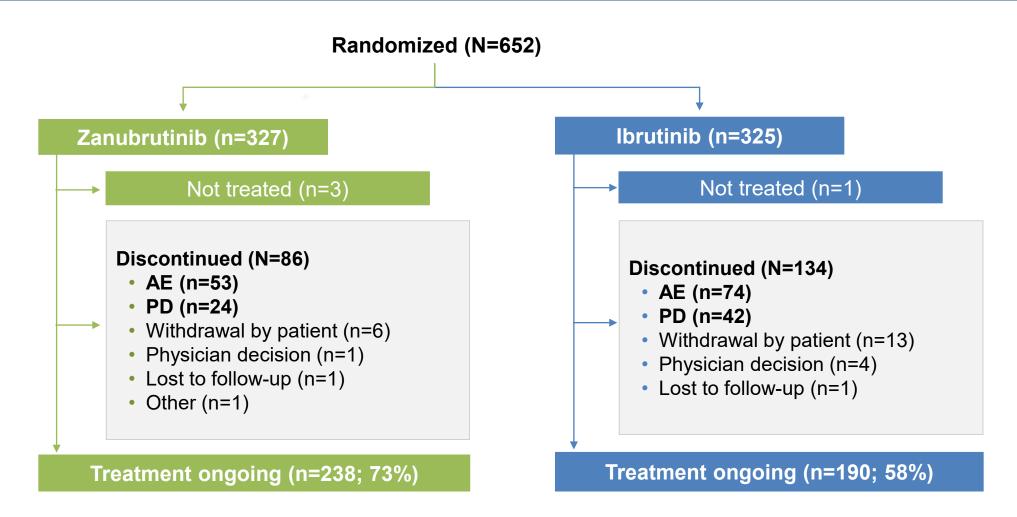
ALPINE Study Design

R/R CLL/SLL with ≥ 1 prior treatment


(Planned N=600, Actual N=652)

Key Inclusion Criteria

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI


Key Exclusion Criteria

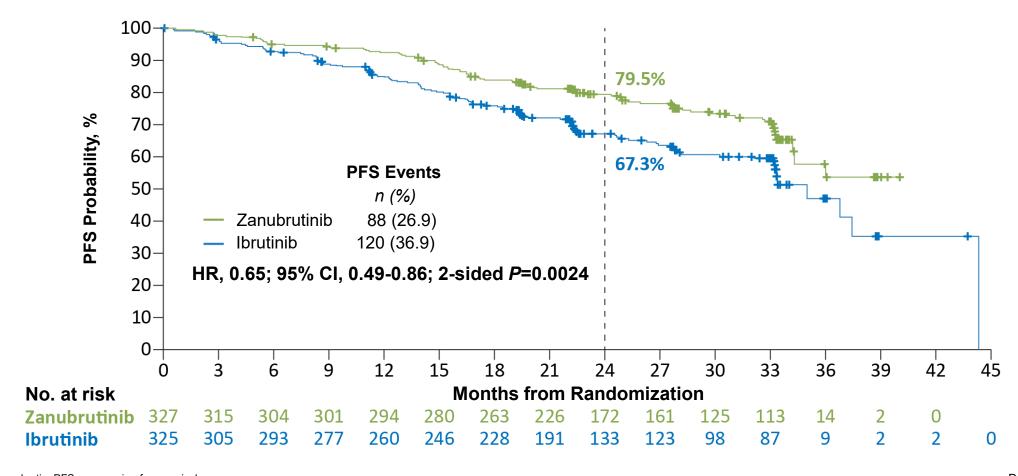
- Prior BTKi therapy
- Treatment with warfarin or other vitamin K antagonists

BID, twice daily; BTKi, Bruton tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; CT, computed tomography; del(17p), deletion in chromosome 17p; MRI, magnetic resonance imaging; QD, daily; R, randomized; R/R, relapsed/refractory; SLL, small lymphocytic lymphoma; TP53, tumor protein p53.

Patient Disposition

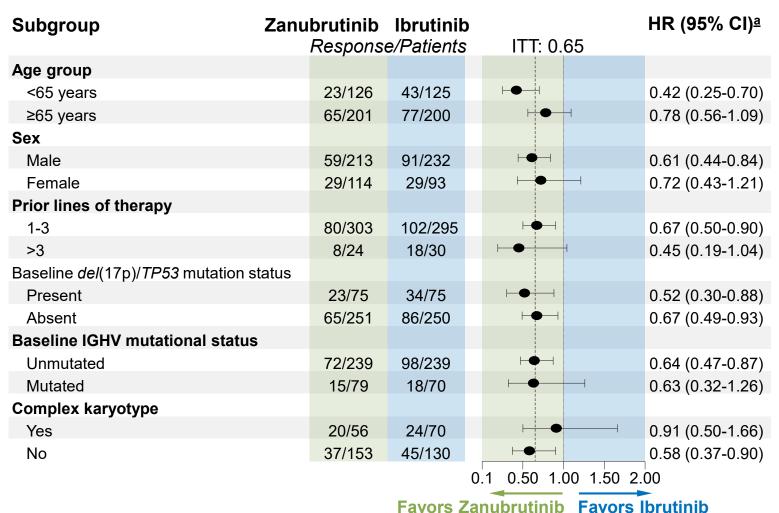
AE, adverse event; PD, progressive disease.

Balanced Demographics and Disease Characteristics


	Zanubrutinib (n=327)	Ibrutinib (n=325)
Age, median (range) ≥65 years, n (%)	67 (35-90) 201 (61.5)	68 (35-89) 200 (61.5)
Male, n (%)	213 (65.1)	232 (71.4)
ECOG PS ≥1, n (%)	198 (60.6)	203 (62.5)
Prior lines of systemic therapy, median (range) >3 prior lines, n (%)	1 (1-6) 24 (7.3)	1 (1-12) 30 (9.2)
del(17p) and/or <i>TP53</i> ^{mut} , n (%) del(17p) <i>TP53</i> ^{mut} without del(17p)	75 (22.9) 45 (13.8) 30 (9.2)	75 (23.1) 50 (15.4) 25 (7.7)
del(11q), n (%)	91 (27.8)	88 (27.1)
IGHV mutational status, n (%) Mutated Unmutated	79 (24.2) 239 (73.1)	70 (21.5) 239 (73.5)
Complex karyotype ^a	56 (17.1)	70 (21.5)
Bulky disease (≥5 cm), n (%)	145 (44.3)	149 (45.8)

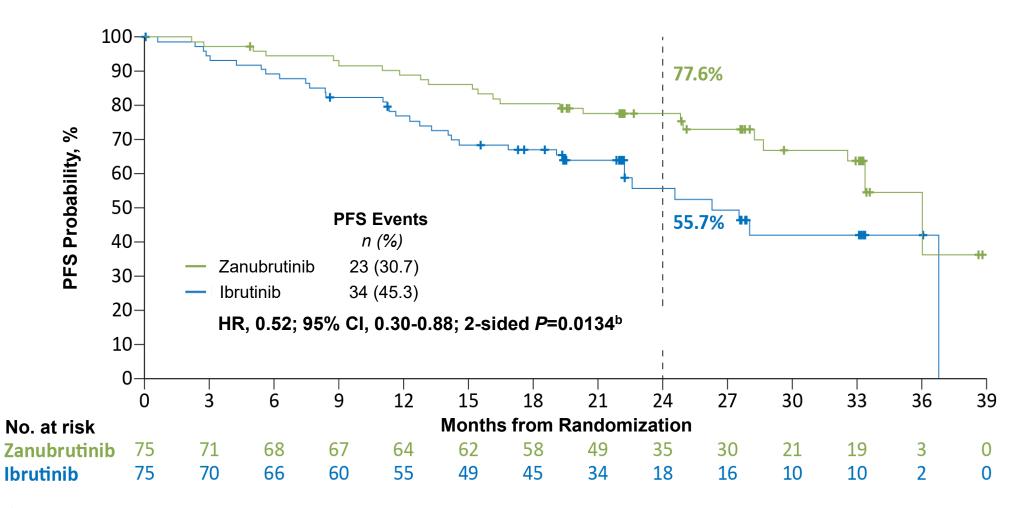
^a Complex karyotype is defined as having ≥3 abnormalities.

ECOG PS, Eastern Cooperative Oncology Group performance status; del(11q), deletion in chromosome 11q; del(17p), deletion in chromosome 17p; IGHV, immunoglobulin heavy chain variable region; TP53^{mut}, tumor protein 53 mutation.

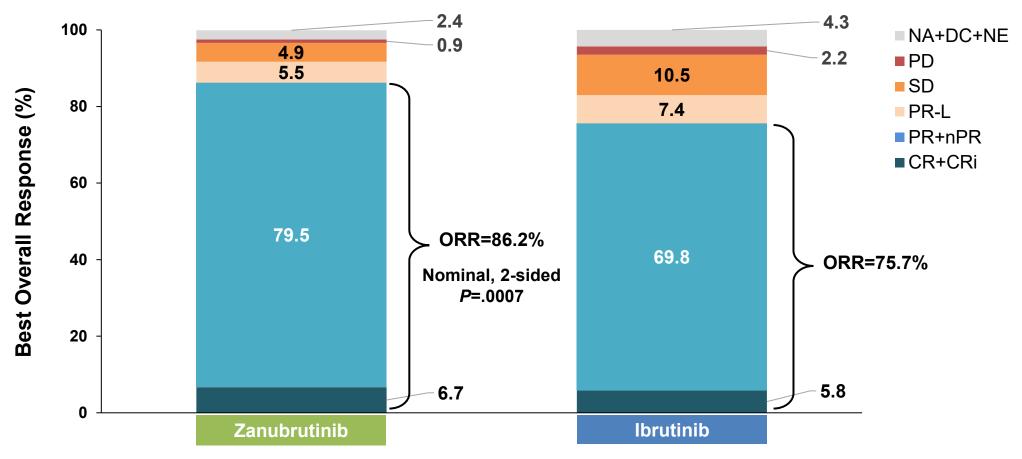

Zanubrutinib PFS by IRC Superior to Ibrutinib

Median study follow-up of 29.6 months

DCO, data cutoff; HR, hazard ratio; PFS, progression-free survival.


PFS Favored Zanubrutinib Across Subgroups

^a HR and 95% CI were unstratified for subgroups.


DCO, data cutoff; del(17p), deletion in chromosome 17p; HR, hazard ratio; IGHV, immunoglobulin heavy chain variable region; ITT, intention to treat; TP53, tumor protein 53.

Zanubrutinib Improved PFS^a in Patients with del(17p)/*TP53*^{mut}

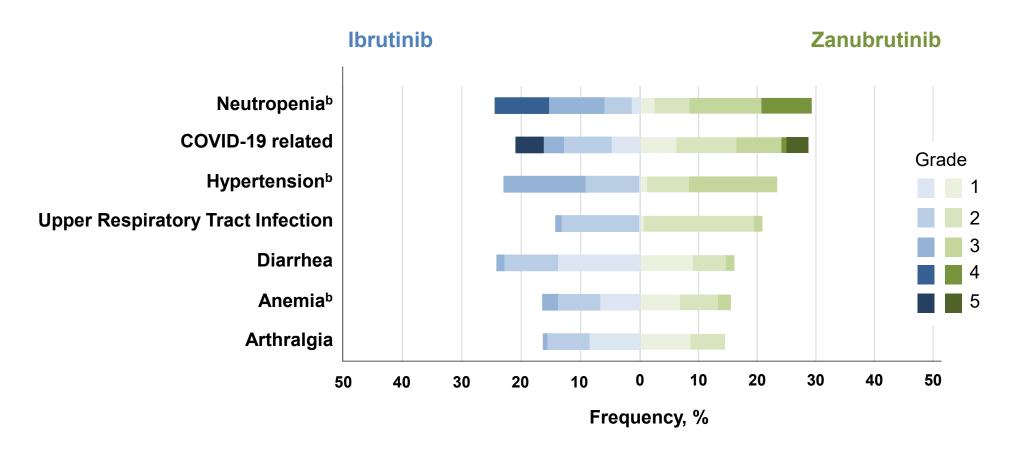
^a PFS data assessed by IRC. ^b Nominal *P* value. del(17p), deletion in chromosome 17p; DCO, data cutoff; HR, hazard ratio; PFS, progression-free survival; *TP53*^{mut}, tumor protein 53 mutation.

Zanubrutinib Showed Higher ORR Assessed by IRC

DCO: 8 Aug 2022

CR, complete response; CRi, complete response with incomplete bone marrow recovery; DC, discontinued prior to first assessment; DCO, data cutoff; IRC, independent review committee; NA, not assessed; NE, not evaluable; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response with lymphocytosis; SD, stable disease.

Overall Safety/Tolerability Summary


• Zanubrutinib safety profile was more favorable compared with ibrutinib

	Zanubrutinib (n=324)	Ibrutinib (n=324)
Median treatment duration, months	28.4	24.3
Any grade AE	318 (98.1)	321 (99.1)
Grade 3 to 5	218 (67.3)	228 (70.4)
Grade 5	33 (10.2)	36 (11.1)
Serious AE	136 (42.0)	162 (50.0)
AEs leading to		
Dose reduction	40 (12.3)	55 (17.0)
Dose interruption	162 (50.0)	184 (56.8)
Treatment discontinuation	50 (15.4)	72 (22.2)

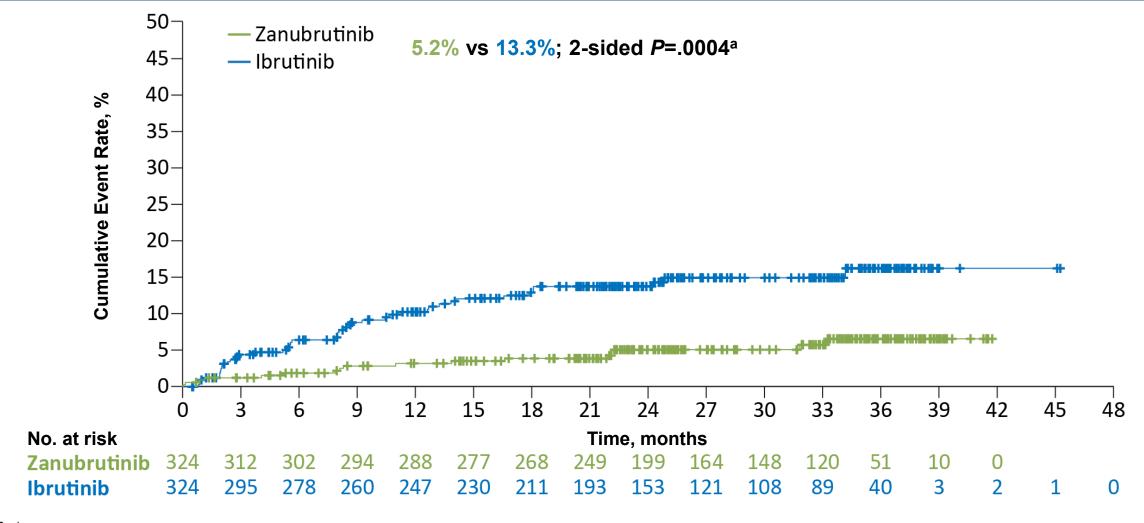
AE, adverse event; DCO, data cutoff.

DCO: 8 Aug 2022

Most Common Adverse Events^a

 $^{\rm a}$ Adverse events occurring in ≥15% of patients in either arm. $^{\rm b}$ Pooled terms. DCO, data cutoff.

Zanubrutinib had a Favorable Cardiac Profile


• Lower rates of cardiac events, serious cardiac events, treatment discontinuation, and deaths

- Lower rate of serious cardiac AEs reported with zanubrutinib
 - Atrial fibrillation/flutter (n=2)
 - MI/ACS (n=2)
 - CHF (n=2)
- Fatal cardiac events:
 - Zanubrutinib, n=0 (0%)
 - lbrutinib, n=6 (1.9%)

	Zanubrutinib (n=324)	lbrutinib (n=324)
Cardiac AEs Serious cardiac AEs	69 (21.3%)	96 (29.6%) 25 (7.7%)
	6 (1.9%)	
Cardiac AEs leading to treatment discontinuation	1 (0.3)	14 (4.3)
Ventricular extrasystoles	1 (0.3)	0
Atrial fibrillation	0	5 (1.5)
Cardiac arrest	0	2 (0.6) ^a
Cardiac failure	0	2 (0.6)
Cardiac failure acute	0	1 (0.3) ^a
Congestive cardiomyopathy	0	1 (0.3) ^a
Myocardial infarction	0	1 (0.3) ^a
Palpitations	0	1 (0.3)
Ventricular fibrillation	0	1 (0.3)

^a Cardiac deaths. One death not listed due to myocardial infarction with ibrutinib discontinuation due to diarrhea 14 days prior to the fatal event. ACS, acute coronary syndrome; AE, adverse event; CHF, congestive heart failure; DCO, data cutoff; MI, myocardial infarction.

Fewer Atrial Fibrillation/Flutter Events With Zanubrutinib

^a Nominal P value. DCO, data cutoff.

Conclusions

- Zanubrutinib demonstrated superior PFS over ibrutinib in patients with relapsed/refractory CLL/SLL
 - PFS benefit seen across all major subgroups, including the del(17p)/TP53^{mut} population
- Zanubrutinib had a favorable safety profile compared with ibrutinib
 - Lower rate of grade ≥3 and serious AEs, fewer AEs leading to treatment discontinuation and dose reduction
 - Zanubrutinib had a better cardiac profile than ibrutinib with lower rates of atrial fibrillation, serious cardiac events, cardiac events
 leading to treatment discontinuation, and fatal cardiac events
- ALPINE is the first study to demonstrate PFS superiority in a head-to-head comparison of BTK inhibitors in
 patients with relapsed/refractory CLL/SLL; zanubrutinib has now proven superiority to ibrutinib in both PFS
 and ORR

Acknowledgments

- We would like to thank our independent data monitoring committee members for their efforts in this study.
- Additionally, we would like to thank the BeiGene ALPINE study team for all their efforts and hard work.
- This study was sponsored by BeiGene, Ltd.
- Medical writing and editorial support, under the direction of the authors, was provided by Regina Switzer, PhD, and Elizabeth Hermans, PhD, of BeiGene, Ltd.; additional editorial assistance was provided by Articulate Science, LLC, and was funded by BeiGene.

Correspondence:

Alessandra Tedeschi <u>alessandra.tedeschi@oespedaleniguarda.it</u>