Long-Term Efficacy and Safety of Zanubrutinib in Patients With Relapsed/Refractory Marginal Zone Lymphoma: Final Analysis of the MAGNOLIA (BGB-3111-214) Trial

C Thieblemont, ¹ J Trotman, ² F Bijou, ³ E Bachy, ⁴ R Costello, ⁵ A Tedeschi, ⁶ B Hu, ⁷ KM Linton, ⁸ P McKay, ⁹ S Leitch, ¹⁰ J Jin, ¹¹ M Sun, ¹² M Sobieraj-Teague, ¹³ PL Zinzani, ¹⁴ P Browett, ¹⁵ X Ke, ¹⁶ CA Portell, ¹⁷ K Ardeshna, ¹⁸ P Walker, ¹⁹ EA Hawkes, ²⁰ S Ho, ²¹ K Zhou, ²² Z Liang, ²³ J Xu, ²³ C Tankersley, ²³ R Delarue, ²³ M Co, ²³ S Opat ²⁴

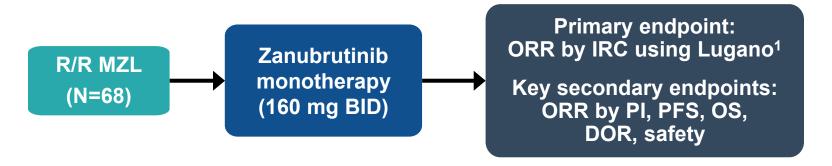
¹AP-HP, Hôpital Saint-Louis, Hemato-oncology, Paris Diderot University, Paris, France; ²Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; ³Institut Bergonié, Bordeaux, France; ⁴Hematology Department, Lyon-Sud Hospital, University of Lyon, Lyon, France; ⁵Hematology and Cellular Therapy Department, Conception University Hospital, Marseille, France; ⁶ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹Levine Cancer Institute/Atrium Health, Charlotte, NC, USA; ⁶Manchester Cancer Research Centre, Division of Cancer Sciences, Manchester, UK; ⁶Beatson West of Scotland Cancer Centre, Glasgow, UK; ¹ºNorth Shore Hospital, Auckland, New Zealand; ¹¹The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China; ¹²Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; ¹³Flinders Medical Centre, Bedford Park, SA, Australia; ¹⁴Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy; ¹⁵Auckland City Hospital, Grafton, New Zealand; ¹⁶Peking University Third Hospital, Beijing, China; ¹¹University of Virginia, Comprehensive Cancer Center, Charlottesville, VA, USA; ¹ðUniversity College London Hospitals, London, UK; ¹⁶Peninsula Private Hospital, Frankston, VIC, Australia; ²⁰Box Hill Hospital, Box Hill, VIC, Australia; ²¹St George Hospital, Kogarah, NSW, Australia; ²²Henan Cancer Hospital, Zhengzhou, Henan, China; ²³BeiGene (Beijing) Co, Ltd, Beijing, China; BeiGene Switzerland GmbH, Basel, Switzerland; and BeiGene USA, Inc, San Mateo, CA, USA;

Speaker Disclosures

Catherine Thieblemont had a consulting or advisory role with Roche, AbbVie, Genmab, Kite/Gilead, Takeda, Novartis, Incyte, Celgene, Bristol Myers Squibb, BeiGene; has received research funding from Roche; and received travel, accommodations, or expenses from Novartis, Gilead, Bristol Myers Squibb, BeiGene.

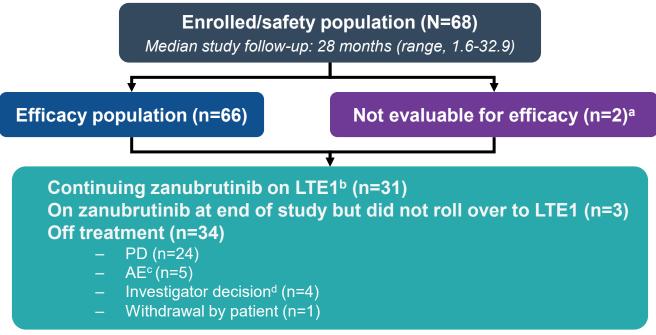
Data originally presented at: Blood 2023, The Combined Annual Scientific Meeting of the HSANZ, ANZSBT, and THANZ; November 5-8, 2023; Melbourne, Australia. Paper Number 200

Corresponding author: Catherine Thieblemont, MD, PhD; email: catherine.thieblemont@aphp.fr


Background

- Advanced-stage MZL is generally incurable¹
- BCR signaling is critical in MZL pathogenesis and BTKs play a key role in BCR signaling²
 - BTK inhibition has antitumor activity in various B-cell malignancies^{2,3}
- Zanubrutinib (BGB-3111) is a new-generation BTK inhibitor
 - Designed to maximize BTK occupancy and minimize off-target inhibition of TEC and EGFR family kinases³⁻⁵
 - Can be coadministered with strong/moderate CYP3A inhibitors (at a reduced dose), proton pump inhibitors, acid-reducing agents, and antithrombotic agents^{6,7}
 - Recently approved for the treatment of patients with R/R MZL based on the primary analysis results of the MAGNOLIA study (BGB-3111-214; NCT03846427)⁷

Here we present the final analysis of MAGNOLIA at a median follow-up of 28 months


MAGNOLIA (BGB-3111-214) Study Design

A Phase 2, Multicenter, Open-label, Single-Arm Study

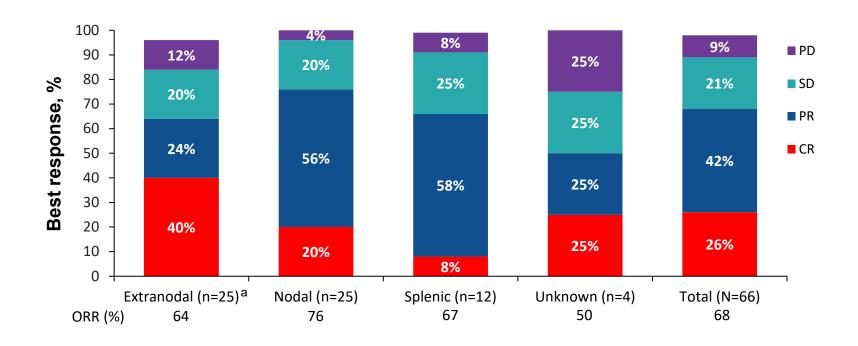
- Patients with R/R MZL who received ≥1 CD20-directed regimen
- Response based on the Lugano classification for NHL¹
 - PET-based criteria for patients with IRC-confirmed, FDG-avid disease
 - CT-based criteria for non–FDG-avid patients
 - Additional sensitivity analysis for all evaluable patients using CT-based criteria
- Biomarker correlative substudy by the Australasian Leukaemia and Lymphoma Group

Patient Disposition

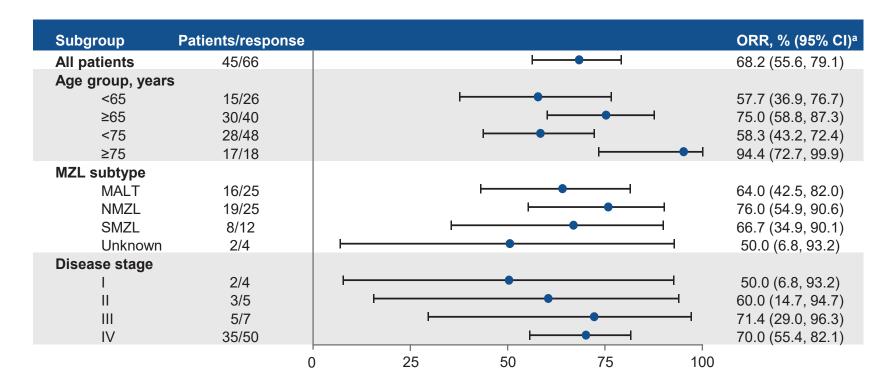
Data cut-off date: May 4, 2022.

^a Two patients were excluded owing to lack of central confirmation of MZL. ^b BGB-3111-LTE1 is a BeiGene-sponsored, global, open-label extension study (NCT04170283). ^c Five patients discontinued treatment owing to AEs (2 patients with fatal COVID-19 pneumonia; 1 patient with pyrexia later attributed to disease progression; 1 case of fatal myocardial infarction in a patient with preexisting cardiovascular disease; 1 patient who died from septic encephalopathy after bladder surgery [in CR at the time of death]). ^d Four patients discontinued per investigator decision (3 patients required prohibited medications; 1 patient due to lack of clinical benefit). AE, adverse event; COVID-19, SARS coronavirus 2; CR, complete response; LTE, long-term extension; MZL, marginal zone lymphoma; PD, progressive disease.

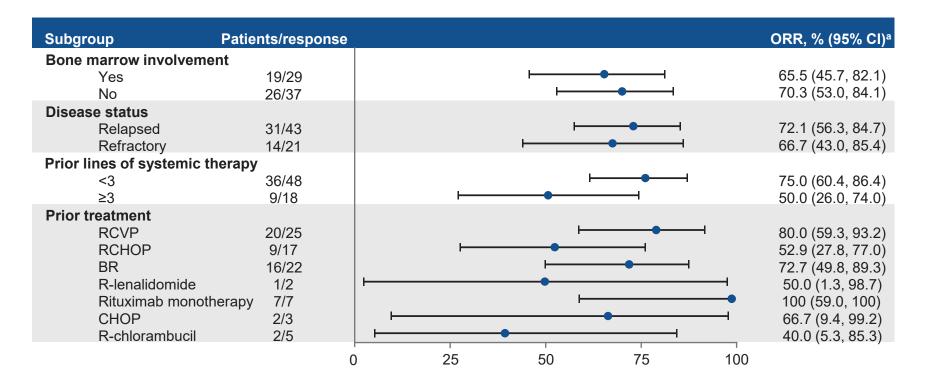
Baseline Demographics and Disease History

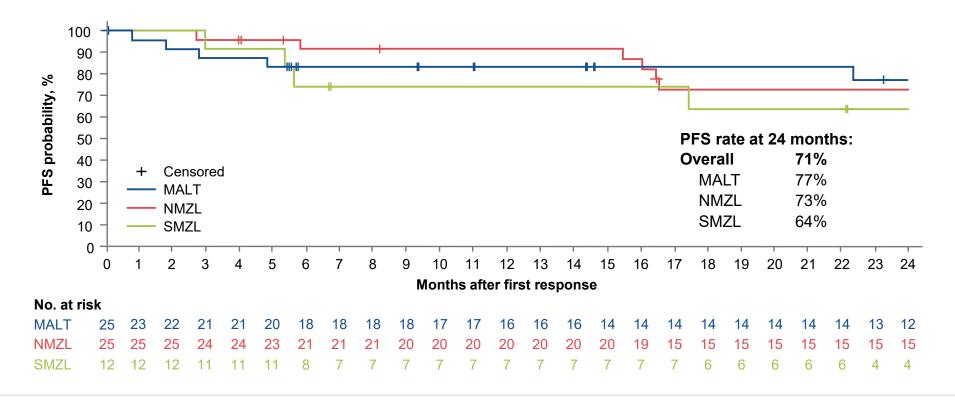

	T- (-1 (N. 00)
Characteristics, n (%)	Total (N=68)
Median age (range), years	70 (37-95)
≥65	41 (60)
≥75	19 (28)
Male	36 (53)
ECOG PS 0/1 ^a	63 (93)
MZL subtypes	
Extranodal	26 (38)
Nodal	26 (38)
Splenic	12 (18)
Unknown	4 (6)
Disease status	
Relapsed	44 (65)
Refractory	22 (32)
Stage III/IV	59 (87)
FDG-avid (by IRC)	61 (90)
Extranodal site involvement	53 (78)
Bone marrow infiltration	29 (43)
Median prior lines of systemic therapy, n (range)	2 (1-6)
Immunochemotherapy	61 (90) ^b
Rituximab monotherapy	7 (10)

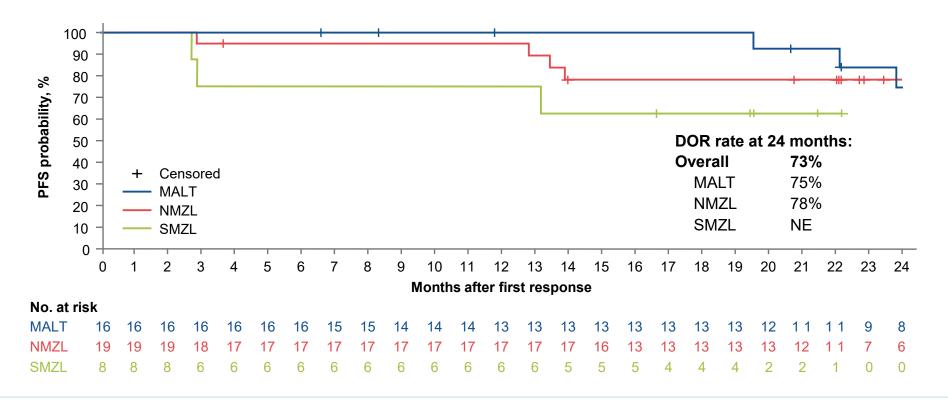
Best Overall Response by IRC and INV Assessment

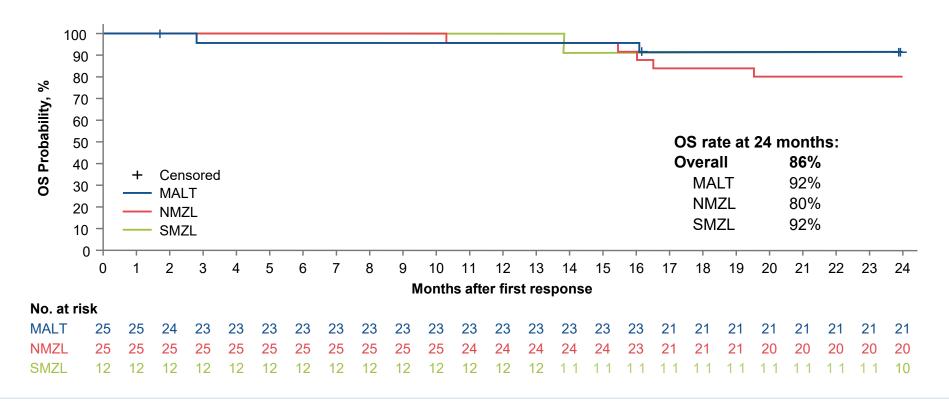

	IR	IRC	
Efficacy	PET and/or CT (primary endpoint) ^b	CT only (sensitivity analysis) ^f	PET and/or CT
ORR, n (%) [95% CI] <i>P</i> value	45 (68) [55.6, 79.1] <0.0001°	44 (67) [54.0, 77.8]	50 (76) [63.6 85.5]
Best response, n (%)	2.222		
CR	17 (26)	16 (24)	19 (29)
PR	28 (42)	28 (42)	31 (47)
SD	14 (21) ^{d,e}	16 (24)	10 (15)
PD	6 (9)	5 (8)	5 (8)
Discontinued study prior to first assessment, n (%)	1 (1)	1 (1)	1 (1)
Median time to response (range), months	2.8 (1.7-11.1)	3.0 (1.8-22.2)	2.8 (1.7-16.6)

^a Two patients were excluded from the efficacy population, owing to lack of central confirmation of MZL. ^b Patients with IRC-confirmed, FDG-avid disease were assessed by PET-based criteria; non–FDG-avid patients were assessed by CT-based Lugano criteria. ^c P value for the primary endpoint was computed with the binomial exact test against the null hypothesis of ORR = 30%, with alternative of ORR >30%. ^d Five (7.6%) patients with SD are remaining on study treatment (after 12-18 cycles). ^e Includes 1 patient with FDG-avid disease who missed the PET scan at cycle 3 and was assessed as non-PD; CT showed SD at cycle 3. ^f Additional sensitivity analysis using CT-based Lugano criteria for all 66 evaluable patients regardless of PET status at baseline. CI, confidence interval; CR, complete response; CT, computerized tomography; FDG, fluorodeoxyglucose; INV, investigator; IRC, independent review committee; MZL, marginal zone lymphoma; ORR, overall response rate; PD, progressive disease; PET, positron emission tomography; PR, partial response; SD, stable disease.


Best Overall Response by IRC Assessment and MZL Subtype

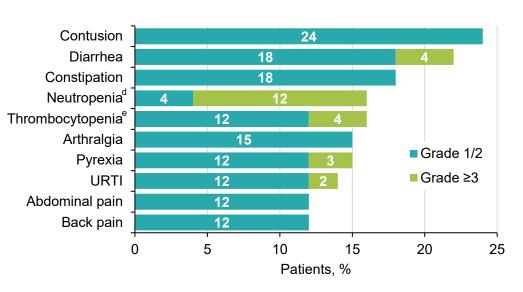

Subgroup Analysis of ORR by IRC


Subgroup Analysis of ORR by IRC (cont.)


PFS by MZL Subtype by IRC Assessment

DOR by MZL Subtype by IRC Assessment

OS by MZL Subtype



TEAEs in All Patients

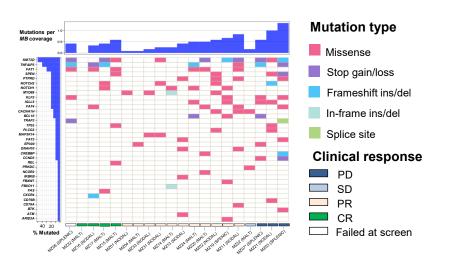
Safety summary

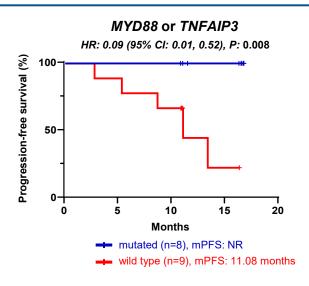
TEAEs, n (%)	N=68
Patients with ≥1 TEAE	68 (100)
Grade ≥3 TEAE	33 (48)
Serious TEAE	30 (44)
Leading to death	5 (7) ^a
Leading to dose interruption	25 (37) ^b
Leading to study drug discontinuation	5 (7)°
Leading to dose reduction	0

Most common TEAEs

AE, adverse event; COVID-19, SARS coronavirus 2; TEAE, treatment-emergent adverse event; URTI, upper respiratory tract infection.

^a Five patients died owing to AEs: COVID-19 pneumonia (n=2); myocardial infarction in a patient with preexisting cardiovascular disease (n=1); acute myeloid leukemia in a patient with prior exposure to an alkylating agent (n=1); septic encephalopathy following radical cystectomy and ileal conduit in a patient with recurrent bladder cancer (in CR at the time of death; [n=1]), b Most common AEs leading to dose interruption: COVID-19 pneumonia (n=4), neutropenia (n=3), diarrhea (n=2), lower respiratory tract infection (n=2), pneumonia (n=2), pyrexia (n=2), syncope (n=2), and tonsillitis (n=2). Five patients discontinued owing to AEs. (COVID-19 pneumonia (n=2); pyrexia later attributed to disease progression (n=1); myocardial infarction (n=1); septic encephalopathy (n=1). d Includes neutropenia and neutrophil count decreased. e Includes thrombocytopenia and platelet count decreased.


TEAEs of Clinical Interest


	N=68	
TEAEs of interest, n (%)	All grade	Grade ≥3
Infections	38 (56)	15 (22)ª
Hemorrhage	28 (41)	1 (1.5) ^b
Cardiac		
Hypertension	3 (4) ^c	2 (3)
Atrial fibrillation/flutter	2 (3) ^d	1 (1.5)
Ventricular extrasystole	1 (1.5) ^e	0
Second primary malignancy	5 (7) ^f	3 (4)

a Fatal infection: COVID-19 pneumonia (n=2). a Gastrointestinal hemorrhage (day 862) in a patient who also received anticoagulant for pulmonary embolism; patient continued zanubrutinib with no recurrent bleeding episode. Two patients had new-onset hypertension; none led to treatment reduction or discontinuation. Atrial fibrillation in a patient with preexisting atrial fibrillation (21 days after end of treatment owing to disease progression). Patient with a trial flutter recovered spontaneously and continued zanubrutinib. Ventricular extrassion as a did not lead to treatment modification or discontinuation. Includes basal cell and squamous cell carcinoma and basal cell carcinoma (with history of skin cancer); papillary thyroid carcinoma (with preexisting thyroid nodule); recurrent bladder cancer and prostate cancer (with history of bladder cancer); and acute myeloid leukemia (with prior chemotherapy with alkylating agent).

TEAE, treatment-emergent adverse event.

Molecular Correlates Substudy¹ (Australasian Leukaemia and Lymphoma Group)

- Baseline WES was performed on 17 patients, focusing on 48 genes known to be currently mutated in MZL
- More than 1 mutation was found in 16/17 (94%) patients
- MYD88 or TNFAIP3 mutations were associated with improved PFS
- Similar observation was reported by Noy et al. with ibrutinib²

Conclusions

At a median study follow-up of 28 months:

- Zanubrutinib showed high response rates and durable disease control in R/R MZL
 - ORR of 68% (by PET and/or CT) and 67% (by CT only), with a CR of ~25% by IRC
 - Responses in all MZL subtypes and in difficult-to-treat subgroups
 - At 24 months: PFS rate, 71%; DOR rate, 73%; OS rate, 86%
- Zanubrutinib was generally well tolerated
 - Hypertension and atrial fibrillation/flutter were uncommon; comparable rate to zanubrutinib pooled safety analyses and lower than reported for ibrutinib
 - One (1.5%) patient had major gastrointestinal hemorrhage while receiving concomitant anticoagulant
 - No new safety signals observed

Acknowledgments

- We would like to thank the MAGNOLIA investigators, site support staff, and, especially, the patients for participating in this study
- This study was sponsored by BeiGene. Medical writing support was provided by Nucleus Global, an Inizio company, and was funded by BeiGene in accordance with Good Publication Practice (GPP) guidelines (http://www.ismpp.org/gpp-2022)