Matching-Adjusted Indirect Comparison (MAIC) of Zanubrutinib versus Ibrutinib in **Relapsed/Refractory Marginal Zone Lymphoma (R/R MZL)**

Catherine Thieblemont,¹ Kaijun Wang,² Sam Keeping,³ Ina Zhang,³ Keri Yang,² Boxiong Tang,² Leyla Mohseninejad² ¹Hôpital Saint-Louis, Paris, France; ²BeiGene USA, Inc., San Mateo, CA, USA, and BeiGene Switzerland GmbH, Basel, Switzerland; ³PRECISIONheor, Vancouver, BC, Canada

INTRODUCTION

- Limited effective and tolerable treatment options are available for patients with MZL who have experienced relapse after or whose lymphoma was refractory to prior standard chemoimmunotherapy with anti-CD20 monoclonal antibodies
- Bruton tyrosine kinase inhibitors (BTKi) have shown deep and durable responses in non-Hodgkin lymphoma subtypes, including Waldenstrom macroglobulinemia, chronic lymphocytic leukemia, and mantle cell lymphoma
- Zanubrutinib, a second-generation BTKi, and ibrutinib, a firstgeneration BTKi, have been assessed in single-arm clinical trials in MZL
- In the absence of head-to-head randomized controlled trials. comparative efficacy estimates must come from unanchored betweentrial comparisons of reported treatment effects

OBJECTIVE

• To assess the comparative efficacy of zanubrutinib vs ibrutinib for the treatment of R/R MZL

METHODS

Data Sources

- Zanubrutinib has been evaluated in 2 single-arm trials in R/R MZL (phase 2 MAGNOLIA trial [NCT03846427]; phase 1/2 BGB-3111-AU-003 trial [NCT02343120])^{1,2}
- Ibrutinib has also been evaluated in R/R MZL in a phase 2, single-arm trial (PCYC-1121 [NCT01980628])^{3,4}

Statistical Analysis

- Propensity score models were used to match baseline characteristics in MAGNOLIA and BGB-3111-AU-003 to those observed in PCYC-1121
- Prognostic factors were ranked by clinical experts (presented in order) of importance in **Table 1**)
- In the base-case model, matched variables included number of prior lines of therapy, MZL subtype, response to prior therapy, and age
- In the sensitivity analysis, the following additional variables were considered: lactate dehydrogenase above normal, bulky disease (>5 cm), prior anti-CD20 therapy, time since last therapy, B symptoms, bone marrow involvement, and Eastern Cooperative Oncology Group (ECOG) performance status
- The impact of each covariate in the base-case and scenario models were explored via a leave-one-out analysis
- Logistic regression models for binary outcomes (objective response rate [ORR]) and Cox proportional hazards models for time-to-event outcomes (overall survival [OS], progression-free survival [PFS]) were used to estimate relative treatment effects for zanubrutinib vs ibrutinib

• MAIC convergence was achieved using the full set of base-case covariates, and baseline characteristics were balanced between the 2 treatment groups after matching (Table 1)

• 2 factors, bone marrow involvement and ECOG performance status, were removed to achieve convergence in the sensitivity analysis model

Table 1. Baseline Characteristics in Zanubrutinib Treatment Group Before and After Matching to Ibrutinib Treatment Group

• A leave-one-out analysis showed significantly improved PFS for zanubrutinib when excluding B symptoms, time since last therapy, or bulky disease from the expanded model

RESULTS

Patient Demographics and Disease Characteristics

-	-			
	Zanubrutinib			
Covariate	Observed (N=86)	Weighted base-case model (ESS=68)	Weighted sensitivity model (ESS=24)	lbrutinib (N=60)
prior treatment lines, %	30.2	30.0	30.0	30.0
3 prior treatment lines, %	25.6	33.3	33.3	33.3
IZL subtype: nodal, %	36.6	28.3	28.3	28.3
IZL subtype: splenic, %	22.0	21.7	21.7	21.7
Refractory to last therapy, %	30.1	22.2	22.2	22.2
Age ≥65 years, %	65.1	60.0	60.0	60.0
DH above normal, %	27.9	N/A	19.0	19.0
Bulky disease >5 cm, %	35.4	N/A	22.2	22.2
Prior anti-CD20 therapy, %	98.9	N/A	100	100
ime since last therapy, nedian, months	29	N/A	45	45
3 symptoms, %	19.8	N/A	23.8	23.8
3one marrow involvement, %	50.0	N/A	N/A	33.3
COG 0-1, %	91.9	N/A	N/A	92.1

Matching-Adjusted Indirect Comparison Results

• Results from the MAIC are reported in **Table 2**, with unadjusted comparisons presented for informative purposes only

• Compared with ibrutinib, zanubrutinib significantly reduced the risk of progression (Figure 1) and was associated with a significantly higher ORR • OS was comparable for zanubrutinib and ibrutinib, which is consistent with expectations for indolent lymphomas, although point estimates were in favor of zanubrutinib (Figure 2)

• The sensitivity analysis accounting for additional prognostic factors suggested that the 2 treatments were comparable across all outcomes, owing in part to the low effective sample size (ESS) for zanubrutinib in the expanded models, although point estimates were in favor of zanubrutinib

Figure 1. Matching-Adjusted Indirect Comparison of Zanubrutinib and Ibrutinib in **Base-Case PFS Analysis (Cox Proportional Hazards Model)**

Figure 2. Matching-Adjusted Indirect Comparison of Zanubrutinib and Ibrutinib in **Base-Case OS Analysis (Cox Proportional Hazards Model)**

CONCLUSIONS

• This MAIC demonstrated ORR and PFS benefits for zanubrutinib in comparison to ibrutinib in R/R MZL

Table 2. Relative Treatment Effect Estimates of Zanubrutinib vs Ibrutinib

	Zanubrutinib	ORR OR	PFS HR	OS HR
odel	ESS	(95% CI)	(95% CI)	(95% CI)
nadjusted	86	2.64 (1.32-5.28)	0.38 (0.22-0.65)	0.61 (0.30-1.22)
		<i>P</i> <.01	<i>P</i> <.01	<i>P</i> =.16
ase-case (all covariates)	68	2.37 (1.13-4.96)	0.38 (0.21-0.69)	0.68 (0.34-1.39)
		<i>P</i> <.01	<i>P</i> <.01	<i>P</i> =.30
ase-case (excluding age)	71	2.58 (1.25-5.35)	0.35 (0.20-0.63)	0.68 (0.34-1.38)
		<i>P</i> =.01	<i>P</i> <.01	<i>P</i> =.29
ase-case (excluding response to st therapy)	73	2.31 (1.12-4.77)	0.41 (0.23-0.71)	0.62 (0.31-1.26)
		<i>P</i> =.02	<i>P</i> <.01	<i>P</i> =.19
ase-case (excluding MZL ubtype)	74	2.51 (1.22-5.15)	0.40 (0.22-0.70)	0.70 (0.35-1.40)
		<i>P</i> =.01	<i>P</i> <.01	<i>P</i> =.31
ase-case (excluding number of rior lines)	73	2.63 (1.27-5.44)	0.34 (0.19-0.63)	0.59 (0.29-1.20)
		<i>P</i> <.01	<i>P</i> <.01	<i>P</i> =.14
ensitivity analysis (all covariates)	24	1.78 (0.65-4.92)	0.48 (0.22-1.04)	0.88 (0.35-2.20)
		<i>P</i> =.26	<i>P</i> =.06	<i>P</i> =.78
ensitivity analysis (excluding B /mptoms)	24	1.99 (0.72-5.48)	0.44 (0.22-0.90)	0.79 (0.33-1.90)
		<i>P</i> =.18	<i>P</i> =.02	<i>P</i> =.60
ensitivity analysis (excluding time nce last therapy)	54	2.34 (1.07-5.12)	0.33 (0.18-0.62)	0.49 (0.23-1.06)
		<i>P</i> =.03	<i>P</i> <.01	<i>P</i> =.07
ensitivity analysis (excluding prior nti-CD20 therapy)	24	1.78 (0.65-4.92)	0.48 (0.22-1.04)	0.88 (0.35-2.20)
		<i>P</i> =.26	<i>P</i> =.06	<i>P</i> =.78
ensitivity analysis (excluding bulky isease)	y 33	1.97 (0.80-4.82)	0.45 (0.22-0.93)	0.86 (0.38-1.94)
		<i>P</i> =.14	<i>P</i> =.03	<i>P</i> =.72
ensitivity analysis (excluding LDH pove normal)	24	1.74 (0.64-4.78)	0.51 (0.23-1.12)	0.95 (0.39-2.32)
		<i>P</i> =.28	<i>P</i> =.09	<i>P</i> =.90

All bolded values are statistically significant at the 0.05 significance level

REFERENCES

Opat S, et al. The MAGNOLIA trial: zanubrutinib, a next-generation Bruton tyrosine kinase inhibitor, demonstrates safety and efficacy in relapsed/refractory marginal zone lymphoma. Clin Cancer Res. 2021;27(23):6323-6332

2. Phillips T, et al. Zanubrutinib monotherapy in relapsed/refractory indolent non-Hodgkin lymphoma. Blood Adv. 2022;6(11):3472-3479.

3. Noy A, et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129(16):2224-2232 4. Noy A, et al. Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: long-term follow-up and biomarker analysis. Blood Adv. 2020;4(22):5773-5784

DISCLOSURES

CT: Consulting or advisory role: Roche, AbbVie, Genmab, Kite Gilead, Takeda, Novartis, Incyte, Celgene, BMS; Research funding: Roche; Travel, accommodations, and expenses: Novartis, Gilead, BMS. KW: no disclosures. SK: Employment: PRECISIONheor; Research funding: BeiGene. IZ: Employment: PRECISIONheor; Research funding: BeiGene. KY: Employment: BeiGene; Leadership: BeiGene; Stock or other ownership: BeiGene; Research funding: BeiGene; Travel, accommodations, and expenses: BeiGene. BT: Employment: BeiGene; Stock or other ownership: BeiGene. LM: Employment: BeiGene

CORRESPONDENCE

Leyla Mohseninejad

ACKNOWLEDGMENTS

The authors thank the patients who participated in the MAGNOLIA, BGB-3111-AU-003, and PCYC-1121 clinical trials. Editorial assistance was provided, under the direction of the authors, by Mary Ann Honors, PhD, MPH, of Articulate Science, LLC, and supported by BeiGene.

Copies of this presentation obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission from EHA and the authors of this presentation