

American Society of Hematology Helping hematologists conquer blood diseases worldwide

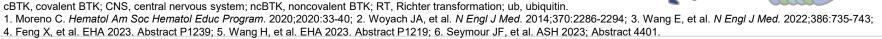


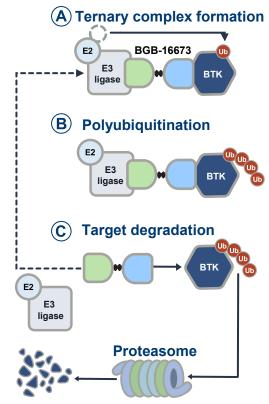
### Preliminary Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: Results From the Phase 1 CaDAnCe-101 Study

**Meghan C. Thompson**,<sup>1</sup> Ricardo D. Parrondo,<sup>2</sup> Anna Maria Frustaci,<sup>3</sup> John N. Allan,<sup>4</sup> Paolo Ghia,<sup>5,6</sup> Irina Mocanu,<sup>7</sup> Constantine S. Tam,<sup>8</sup> Judith Trotman,<sup>9</sup> Inhye E. Ahn,<sup>10</sup> Stephan Stilgenbauer,<sup>11</sup> Lydia Scarfò,<sup>5,6</sup> Xiangmei Chen,<sup>12</sup> Kunthel By,<sup>13</sup> Shannon Fabre,<sup>13</sup> Daniel Persky,<sup>13</sup> Amit Agarwal,<sup>13</sup> John F. Seymour<sup>14</sup>

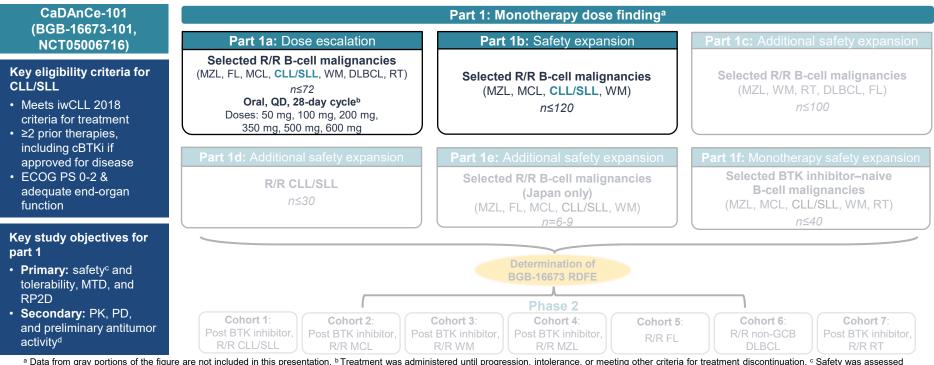
<sup>1</sup>Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>2</sup>Mayo Clinic - Jacksonville, Jacksonville, FL, USA; <sup>3</sup>ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; <sup>4</sup>Weill Cornell Medicine, New York, NY, USA; <sup>5</sup>Università Vita-Salute San Raffaele, Milano, Italy; <sup>6</sup>IRCCS Ospedale San Raffaele, Milano, Italy; <sup>7</sup>Institute of Oncology, ARENSIA Exploratory Medicine, Düsseldorf, Germany; <sup>8</sup>Alfred Hospital and Monash University, Melbourne, VIC, Australia; <sup>9</sup>Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; <sup>10</sup>Dana-Farber Cancer Institute, Boston, MA, USA; <sup>11</sup>Ulm University, UIm, Germany; <sup>12</sup>BeiGene (Shanghai) Co, Ltd, Shanghai, China; <sup>13</sup>BeiGene USA, Inc, San Mateo, CA, USA; <sup>14</sup>Peter MacCallum Cancer Centre, Revel Melbourne, Hospital, and University of Melbourne, VIC, Australia, <sup>10</sup>Dana-Farber Cancer Centre, Concord, NSW, Concord, NSW, Australia; <sup>10</sup>Dana-Farber Cancer Centre, New York, NY, USA; <sup>11</sup>Ulm University, UIm, Germany; <sup>12</sup>BeiGene (Shanghai) Co, Ltd, Shanghai, China; <sup>13</sup>BeiGene USA, Inc, San Mateo, CA, USA; <sup>14</sup>Peter MacCallum Cancer Centre, Concord, NSW, Concord, NS

Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia





### **BGB-16673: A Chimeric Degradation Activating Compound (CDAC)**

- Many patients with CLL/SLL experience disease progression with BTK inhibitors, which can be caused by resistance mutations in BTK<sup>1-3</sup>
- BGB-16673 is a bivalent CNS-penetrating small molecule that induces BTK degradation by binding specifically to BTK and the E3 ligase<sup>4</sup>
- In preclinical models, BGB-16673 degraded both wild-type and mutant BTK resistant to cBTK (C481S, C481F, C481Y, L528W, T474I) and ncBTK inhibitors (V416L, M437R, T474I, L528W), leading to tumor suppression<sup>4,5</sup>
- BGB-16673 led to substantial reductions in BTK protein levels in peripheral blood and tumor tissue<sup>6</sup>


American Society of Hematology

 We present updated safety and efficacy results in patients with R/R CLL/SLL and preliminary efficacy results in patients with R/R RT from phase 1 of CaDAnCe-101





### CaDAnCe-101: Phase 1/2, Open-Label, Dose-Escalation/ Expansion Study in R/R B-Cell Malignancies



<sup>a</sup> Data from gray portions of the figure are not included in this presentation. <sup>b</sup> Treatment was administered until progression, intolerance, or meeting other criteria for treatment discontinuation. <sup>c</sup> Safety was assessed according to CTCAE v5.0 in all patients and iwCLL hematologic toxicity criteria in patients with CLL; DLTs were assessed during the first 4 weeks of part 1a. <sup>d</sup> Response was assessed per iwCLL 2018 criteria after 12 weeks in patients with RT. GCB, germinal center B cell; RT, Richter transformation.

# **Baseline Patient Characteristics**

#### Heavily pretreated, with high-risk CLL features

|                                           | Total<br>(N=60) |                                               | Total<br>(N=60) |
|-------------------------------------------|-----------------|-----------------------------------------------|-----------------|
| Age, median (range), years                | 70 (50-91)      | Mutation status, n/N (%)                      |                 |
| Male, n (%)                               | 39 (65.0)       | BTK mutation present                          | 18/54           |
| ECOG PS, n (%)                            |                 | B IN mutation present                         | (33.3)          |
| 0                                         | 34 (56.7)       | PLCG2 mutation present                        | 8/54 (14.8)     |
| 1                                         | 25 (41.7)       | No. of prior lines of therapy, median (range) | 4 (2-10)        |
| 2                                         | 1 (1.7)         | Prior therapy, n (%)                          |                 |
| CLL/SLL risk characteristics at study ent | <b>、</b>        | Chemotherapy                                  | 43 (71.7)       |
| n/N with known status (%)                 |                 | cBTK inhibitor                                | 56 (93.3)       |
| Binet stage C                             | 27/56 (48.2)    | ncBTK inhibitor                               | 13 (21.7)       |
| Unmutated IGHV                            | 38/46 (82.6)    | BCL2 inhibitor                                | 50 (83.3)       |
| del(17p) and/or <i>TP53</i> mutation      | 40/60 (66.7)    | cBTK + BCL2 inhibitors                        | 38 (63.3)       |
| Complex karyotype (≥3 abnormalities)      | 19/38 (50.0)    | cBTK + ncBTK + BCL2 inhibitors                | 12 (20.0)       |
|                                           |                 | Discontinued prior BTK inhibitor due to PD,   | 50/56           |

n/N (%)<sup>a</sup>

(89.3)

Data cutoff: September 2, 2024.

<sup>a</sup> Remaining 6 patients discontinued prior BTK inhibitor due to toxicity (n=3), treatment completion (2), and other (n=1). cBTK, covalent BTK; ncBTK, noncovalent BTK.



# **Overall Safety Summary**

#### No treatment-related TEAEs leading to death

• One DLT<sup>a</sup> at 200-mg dose (grade 3 maculopapular rash; patient continued on treatment after a 5-day hold)

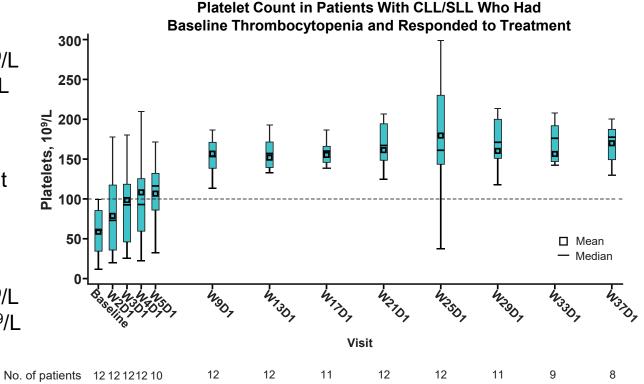
| Patients, n (%)                                        | Total<br>(N=60) |
|--------------------------------------------------------|-----------------|
| Any TEAE                                               | 56 (93.3)       |
| Any treatment-related                                  | 41 (68.3)       |
| Grade ≥3                                               | 33 (55.0)       |
| Treatment-related grade ≥3                             | 16 (26.7)       |
| Serious                                                | 27 (45.0)       |
| Treatment-related serious                              | 6 (10.0)        |
| Leading to death                                       | 3 (5.0)         |
| Treatment-related leading to death                     | 0               |
| Leading to treatment discontinuation                   | 7 (11.7)        |
| Treatment-related leading to treatment discontinuation | 2 (3.3)         |

Median follow-up for safety-evaluable patients: 10.2 months (range, 0.3-26.4+). <sup>a</sup> DLTs were only assessed during the first 4 weeks of part 1a.



### Safety Summary and All-Grade TEAEs in ≥10% of All Patients

- No atrial fibrillation
- No pancreatitis
- Major hemorrhage<sup>b</sup>: 3.3% (n=2; grade 1 subarachnoid hemorrhage [n=1] and grade 3 subdural hemorrhage [n=1])
- Febrile neutropenia: 1.7% (n=1; in the context of COVID-19 pneumonia and norovirus diarrhea)


|                                | Total (N=60) |           |  |
|--------------------------------|--------------|-----------|--|
| Patients, n (%)                | All Grade    | Grade ≥3  |  |
| Fatigue                        | 18 (30.0)    | 1 (1.7)   |  |
| Contusion (bruising)           | 17 (28.3)    | 0         |  |
| Neutropenia <sup>c</sup>       | 15 (25.0)    | 13 (21.7) |  |
| Diarrhea                       | 14 (23.3)    | 1 (1.7)   |  |
| Anemia                         | 11 (18.3)    | 0         |  |
| Lipase increased <sup>a</sup>  | 10 (16.7)    | 2 (3.3)   |  |
| Cough                          | 9 (15.0)     | 0         |  |
| Pneumonia                      | 8 (13.3)     | 5 (8.3)   |  |
| Pyrexia                        | 8 (13.3)     | 0         |  |
| Arthralgia                     | 7 (11.7)     | 0         |  |
| COVID-19                       | 7 (11.7)     | 0         |  |
| Dyspnea                        | 7 (11.7)     | 0         |  |
| Peripheral edema               | 7 (11.7)     | 0         |  |
| Thrombocytopenia <sup>d</sup>  | 7 (11.7)     | 2 (3.3)   |  |
| Amylase increased <sup>a</sup> | 6 (10.0)     | 0         |  |
| Nausea                         | 6 (10.0)     | 0         |  |
| Sinusitis                      | 6 (10.0)     | 0         |  |

Median follow-up: 10.2 months (range, 0.3-26.4+).

<sup>a</sup> All events were lab findings and were transient, mostly occurring during the first 1-3 cycles of treatment, with no clinical pancreatitis. <sup>b</sup> Grade ≥3, serious, or any central nervous system bleeding. <sup>c</sup>Neutropenia combines preferred terms *neutrophil count decreased* and *neutropenia*. <sup>d</sup>Thrombocytopenia combines preferred terms *platelet count decreased* and *thrombocytopenia*.

### Rapid and Significant Cytopenia Improvement in Patients With Treatment Response

- Median neutrophil count improved from 1.18 × 10<sup>9</sup>/L at baseline to 2.76 × 10<sup>9</sup>/L at W9D1<sup>a</sup>
- Median hemoglobin level improved from 9.9 g/dL at baseline to 11.0 g/dL at W13D1<sup>b</sup>
- Median platelet count improved from  $60.5 \times 10^{9}$ /L at baseline to  $153.0 \times 10^{9}$ /L at W9D1<sup>c</sup>



<sup>a</sup> For n=10 patients based on 1.5×10<sup>9</sup>/L cutoff. <sup>b</sup> For n=17 patients based on 11.0 g/dL cutoff. <sup>c</sup> For n=12 patients based on 100×10<sup>9</sup>/L cutoff.

### **Overall Response Rate**

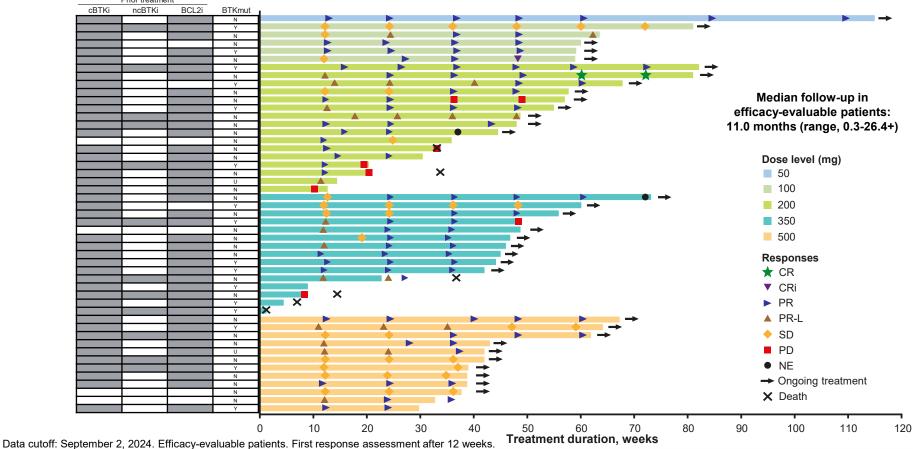
#### Significant Responses, Particularly at 200 mg Dose Level

|                                                 | 50 mg<br>(n=1)      | 100 mg<br>(n=5)     | 200 mg<br>(n=16)   | 350 mg<br>(n=15)   | 500 mg<br>(n=12)  | Total <sup>a</sup><br>(N=49) |
|-------------------------------------------------|---------------------|---------------------|--------------------|--------------------|-------------------|------------------------------|
| Best overall response, n (%)                    |                     | -                   |                    |                    |                   |                              |
| CR/CRi                                          | 0                   | 1 (20.0)            | 1 (6.3)            | 0                  | 0                 | 2 (4.1)                      |
| PR⁵                                             | 1 (100)             | 3 (60.0)            | 12 (75.0)          | 10 (66.7)          | 7 (58.3)          | 33 (67.3)                    |
| PR-L                                            | 0                   | 0                   | 2 (12.5)           | 0                  | 1 (8.3)           | 3 (6.1)                      |
| SD                                              | 0                   | 1 (20.0)            | 0                  | 1 (6.7)            | 4 (33.3)          | 6 (12.2)                     |
| PD                                              | 0                   | 0                   | 1 (6.3)            | 1 (6.7)            | 0                 | 2 (4.1)                      |
| Discontinued prior to first assessment          | 0                   | 0                   | 0                  | 3 (20.0)           | 0                 | 3 (6.1)                      |
| ORR, n (%)⁰                                     | 1 (100)             | 4 (80.0)            | 15 (93.8)          | 10 (66.7)          | 8 (66.7)          | 38 (77.6)                    |
| Disease control rate, n (%) <sup>d</sup>        | 1 (100)             | 5 (100)             | 15 (93.8)          | 11 (73.3)          | 12 (100)          | 44 (89.8)                    |
| Time to first response, median (range), monthse | 2.9 (2.9-2.9)       | 4.2 (2.8-6.2)       | 2.9 (2.6-8.3)      | 2.8 (2.6-8.3)      | 2.8 (2.6-8.3)     | 2.8 (2.6-8.3)                |
| Time to best response, median (range), months   | 2.9 (2.9-2.9)       | 5.6 (2.8-11.1)      | 3.4 (2.6-13.8)     | 5.6 (2.6-8.3)      | 4.2 (2.6-8.6)     | 3.6 (2.6-13.8)               |
| Duration of exposure, median (range), months    | 26.4<br>(26.4-26.4) | 13.8<br>(13.6-18.6) | 10.6<br>(2.9-18.9) | 10.3<br>(0.2-16.8) | 9.3<br>(6.8-15.4) | 10.4<br>(0.2-26.4)           |

<sup>a</sup> Efficacy-evaluable population. <sup>b</sup> Out of 33 patients with PR, 8 achieved all nodes normalized. <sup>c</sup> Includes best overall response of PR-L or better. <sup>d</sup> Includes best overall response of SD or better. <sup>e</sup> In patients with a best overall response of PR-L or better.

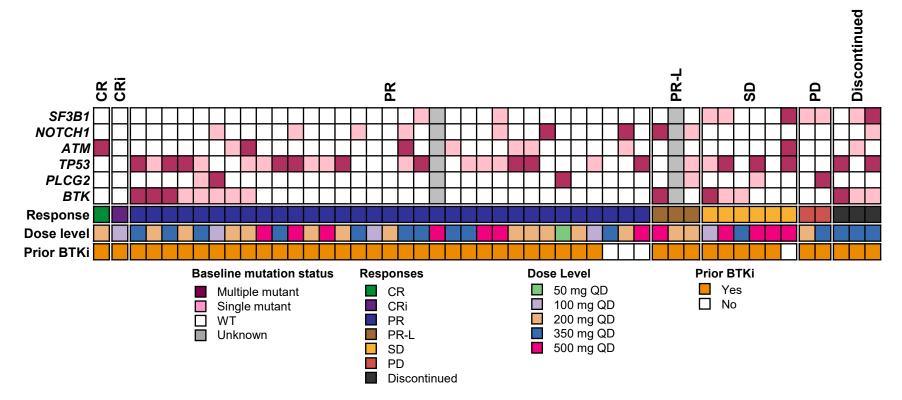
CRi, complete response with incomplete marrow recovery; PR-L, partial response with lymphocytosis.

### High Overall Response Rates in All Biologic Subsets


| Characteristic, n/N with known status (%)                    | Total (N=49)ª |
|--------------------------------------------------------------|---------------|
| Double exposure (previously received cBTKi + BCL2i)          | 26/30 (86.7)  |
| Triple exposure (previously received cBTKi + ncBTKi + BCL2i) | 7/12 (58.3)   |
| del(17p) and/or <i>TP53</i> mutation                         | 23/31 (74.2)  |
| Complex karyotype                                            | 11/15 (73.3)  |
| BTK mutations                                                | 10/16 (62.5)  |
| PLCG2 mutations                                              | 4/6 (66.7)    |

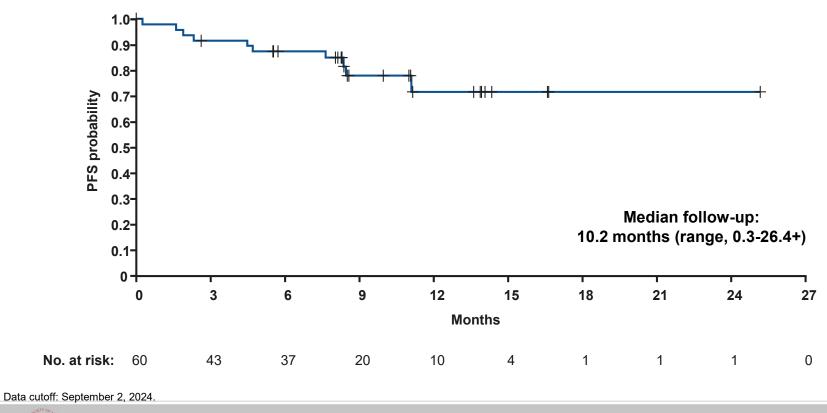
<sup>a</sup> Efficacy-evaluable population.

BCL2i, BCL2 inhibitor; cBTKi, covalent BTK inhibitor; ncBTKi, non-covalent BTK inhibitor.



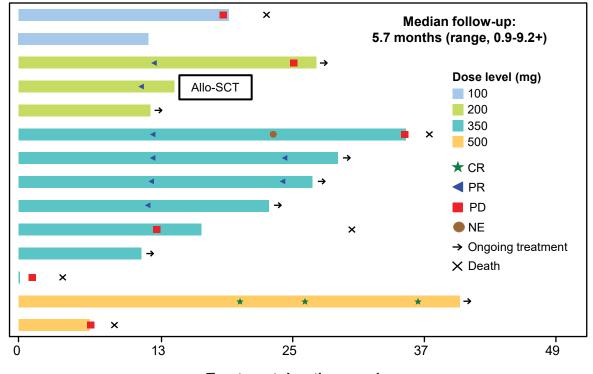

# Treatment Duration and Response




### **Responses Occurred Regardless of Specific Mutations**

**Best Overall Response vs. Baseline Mutation** 




BTKi, Bruton tyrosine kinase inhibitor; CRi, complete response with incomplete marrow recovery; PR-L, partial response with lymphocytosis; WT, wild type.

### **Progression-Free Survival**



### **Promising Activity Also Seen in Patients With Richter Transformation**

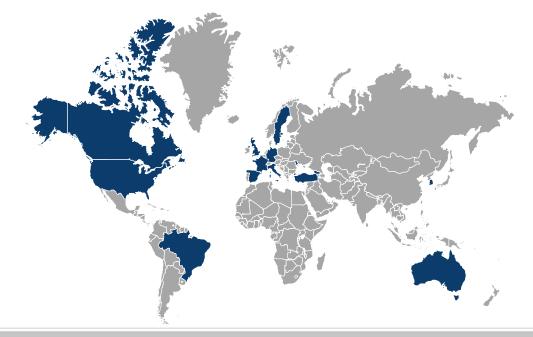
- Safety-evaluable patients, n=14; efficacy-evaluable patients, n=12
- Median age (range): 64 years (47-80 years)
- Median prior number of therapies for RT (range): 2 (1-9)
- All patients previously received a cBTKi; 12/14 had anthracyclines
- ORR: 58.3% (7/12), CR: 8.3% (1/12)
- 5 of 7 (71.4%) patients with response on treatment for >6 months

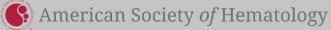


Treatment duration, weeks

Data cutoff: September 2, 2024. cBTKi, covalent BTK inhibitor; NE, not evaluable.




### Conclusions




- In phase 1 of CaDAnCe-101, the novel BTK degrader BGB-16673 was safe and well tolerated in this heavily pretreated population of patients with R/R CLL/SLL
  - One DLT; MTD not reached
  - No atrial fibrillation
- Significant antitumor activity, including in patients with BTK inhibitor-resistant mutations and those previously exposed to cBTK, ncBTK, and BCL2 inhibitors
  - ORR 77.6% (38/49) and CR/CRi 4.1% (2/49); ORR 93.8% at 200 mg
  - Median time to first response: 2.8 months
  - Deepening of response observed over time (median 11.0-month follow-up)
- Promising activity in RT: ORR: 58.3% (7/12), CR: 8.3% (1/12)
- A phase 2 cohort of patients with CLL/SLL exposed to both a BTK inhibitor and BCL2 inhibitor is enrolling

### CaDAnCe-101 Study Sites (Recruiting)

 Enrollment for CaDAnCe-101 phase 1 and phase 2 is ongoing at 100+ study sites across the US, Canada, the UK, France, Georgia, Germany, Italy, Moldova, Spain, Sweden, Turkey, Australia, South Korea, and Brazil





# Acknowledgments

- The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers
- They also thank Amber Lussier and Moto Takai for assistance in developing this presentation and Qiming Zhou from Bioinformatics for assistance on the high throughput data analysis
- This study was sponsored by BeiGene, Ltd
- Medical writing was provided by Brittany Gifford, PharmD, of Nucleus Global, an Inizio company, and supported by BeiGene

**Corresponding author:** Meghan C. Thompson, thompsm2@mskcc.org

