Clinical Outcomes in Patients Receiving Ibrutinib on the Phase 3 ASPEN Study ≥1 Year After Transitioning to Zanubrutinib

Olivier Tournilhac,¹ Ramon Garcia-Sanz,² Roger Owen,³ Wojciech Jurczak,⁴ Meletios Dimopoulos,⁵ Helen McCarthy,⁶ Gavin Cull,⁷ Stephen Opat,⁸ Jorge J. Castillo,⁹ Marie José Kersten,¹⁰ Björn E. Wahlin,¹¹ Sebastian Grosicki,¹² Radha Prathikanti,¹³ Tian Tian,¹³ Heather Allewelt,¹³ Aileen Cohen,¹³ Constantine S. Tam¹⁴

¹CHU de Clermont-Ferrand, Cellular Therapy and Clinical Hematology Department, Clermont-Ferrand, France; ²Hospital Universitario de Salamanca, Department of Hematology, Salamanca, Spain; ³St. James's University Hospital, Department of Hematology, Leeds, UK; ⁴MSC National Research Institute of Oncology, Department of Clinical Oncology, Kraków, Poland; ⁵General Hospital of Athens-Alexandra, Department of Clinical Therapeutics, Llisia, Greece; ⁶Royal Bournemouth Hospital, Department of Hematology, Bournemouth, UK; ⁷Sir Charles Gairdner Hospital, Department of Hematology, Nedlands, WA, Australia; ⁸Monash Health, Clinical Haematology Unit, Clayton, VIC, Australia; ⁹Dana-Farber Cancer Institute, Department of Clinical Oncology, Boston, MA, USA; ¹⁰Amsterdam University Medical Centers, University of Amsterdam, Department of Hematology, Amsterdam, the Netherlands; ¹¹Karolinska Universitetssjukhuset Solna, Department of Medicine, Solna, Sweden; ¹²Silesian Medical University, Department of Hematology and Cancer Prevention, School of Public Health, Katowice, Poland; ¹³BeiGene USA, Inc, Hematology Clinical Development, San Mateo, CA, USA; ¹⁴Alfred Hospital and Monash University, Division of Hematology and Oncology, Melbourne, VIC, Australia

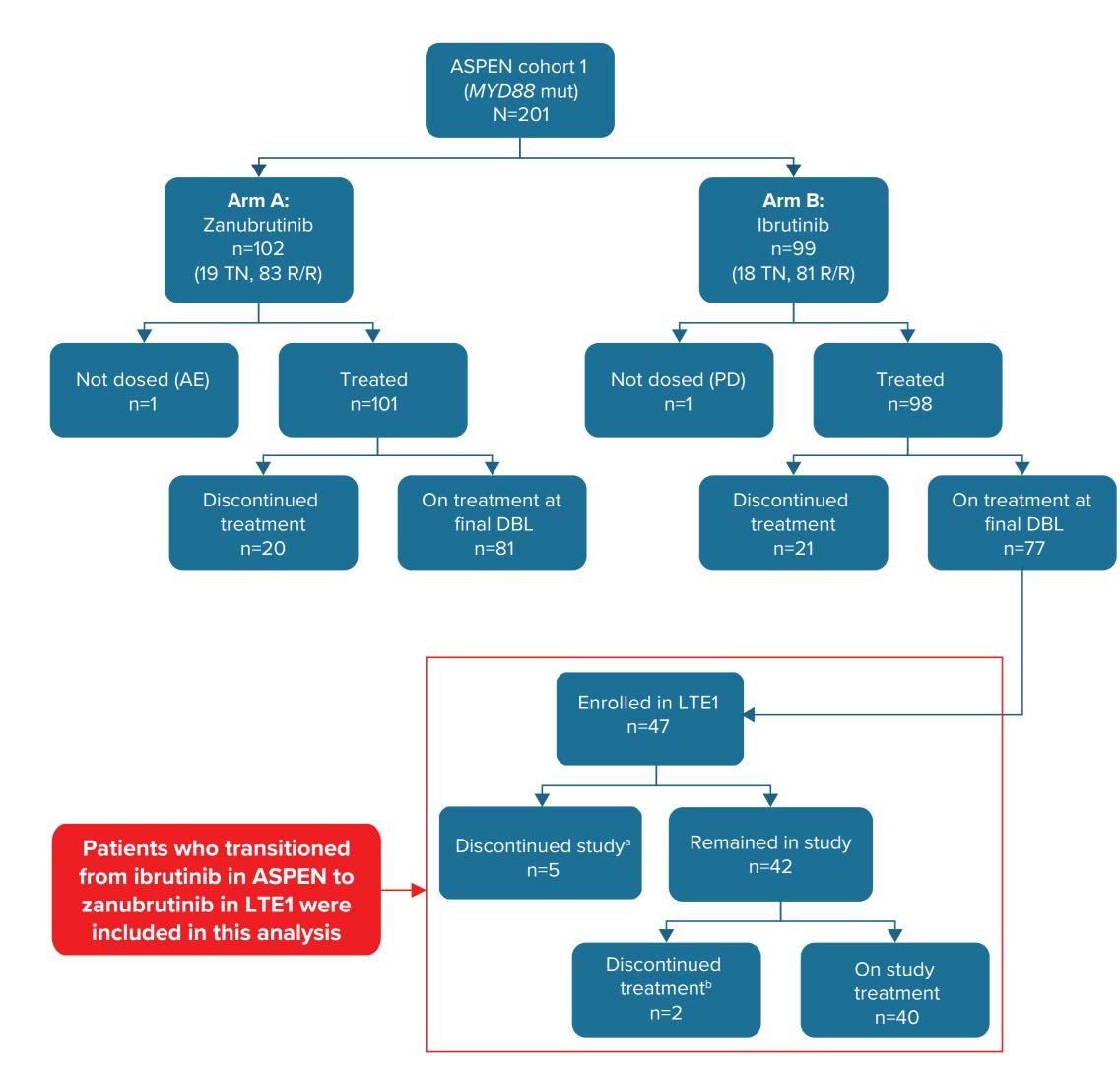
INTRODUCTION

- Bruton tyrosine kinase (BTK) inhibitors have become a standard of care in treating patients with Waldenström macroglobulinemia (WM)¹
- Zanubrutinib, a next-generation BTK inhibitor, was developed to ensure greater BTK specificity and potency than ibrutinib to avoid toxicities associated with off-target binding and improve efficacy²
- The ASPEN study (BGB-3111-302; NCT03053440) directly compared outcomes of zanubrutinib and ibrutinib treatment in patients with myeloid differentiation primary response 88 (*MYD88*)–mutated WM³
- The BGB-3111-LTE1 study (LTE1; NCT04170283) is a long-term extension

Safety Results

- Grade ≥3 and serious TEAEs occurred in 23% and 13% of patients, as presented in Table 2
- Two deaths occurred in LTE1; both were due to COVID-19
- Infections (6.4%; all COVID-19) were the only grade ≥3 TEAEs that occurred in more than 2 patients, and no serious TEAEs occurred in more than 2 patients (Table 3)
- TEAEs of interest for zanubrutinib are presented in Table 4
- The majority of ibrutinib-emergent adverse events did not recur or worsen with zanubrutinib (Figure 2)

CONCLUSIONS


- The majority of ibrutinib-emergent adverse events did not recur or worsen with zanubrutinib treatment, despite advanced and increasing age
- WM disease response was maintained or improved in 96% of efficacy-evaluable patients (44/46)
- While limited by sample size and nonrandomized/ ad hoc analysis, data suggest that patients who are

- study in which eligible patients can enroll following participation in parent studies of zanubrutinib for treatment of B-cell malignancies, including patients from comparator treatment arms
- Here, we report safety and efficacy outcomes in patients with WM receiving ibrutinib in ASPEN at ≥1 year after transitioning to zanubrutinib in the LTE1 study

METHODS

- All patients (N=47) who enrolled in LTE1 from the ibrutinib arm of ASPEN (arm B) were included in this ad hoc analysis (Figure 1)
- Patients began treatment with zanubrutinib at 320-mg total daily dose upon enrollment
- Safety and efficacy outcomes were evaluated, including the recurrence of ibrutinib treatment-emergent adverse events (TEAEs)
- Investigators assessed disease response every 6 months, or more frequently as indicated, based on the modified Owen criteria and using parameters at ASPEN study entry (BTK inhibitor pretreatment); alternatively, investigators could assess "no evidence of progressive disease" using their clinical judgment

Figure 1. CONSORT Diagram of the ASPEN and LTE1 Studies

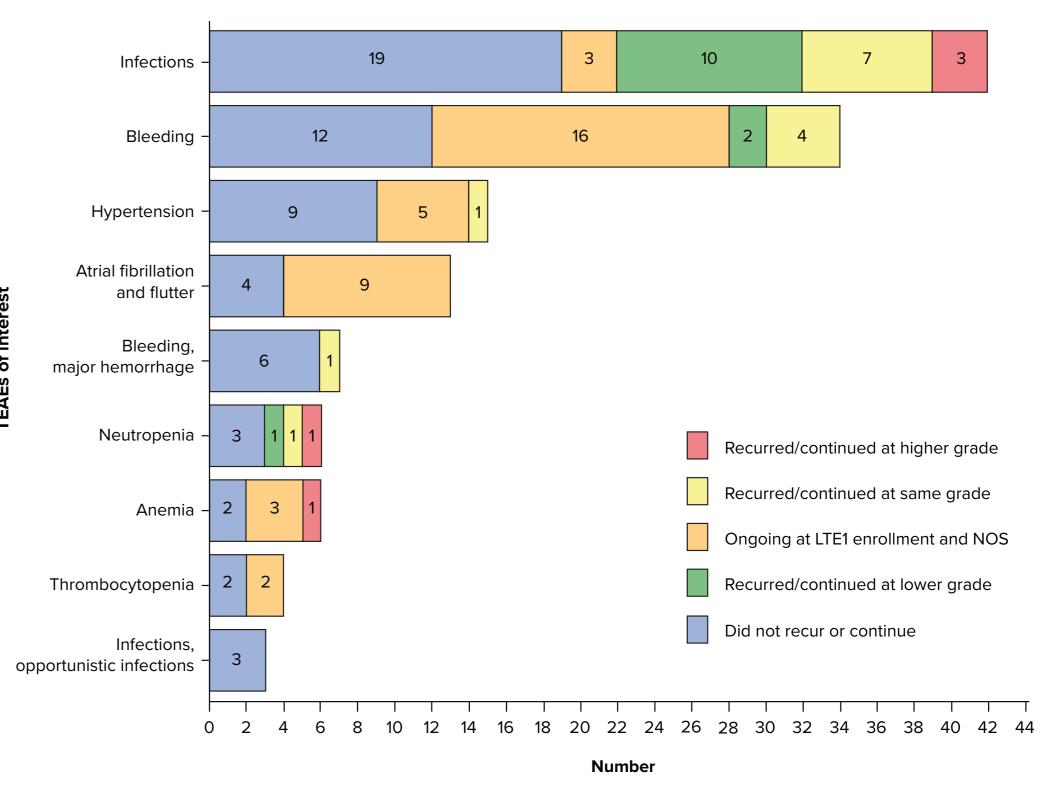

- Worsening of ibrutinib TEAEs of interest for BTK inhibitor treatment following the transition to zanubrutinib included infections (n=3), all of which were due to COVID-19 (Figure 2), anemia (n=1), and neutropenia (n=1)
- No ongoing hypertension worsened in severity and no new or recurrent episodes of hypertension occurred after patients switched from ibrutinib to zanubrutinib
- Of the 7 patients who experienced cardiovascular AEs (8 events) in LTE1, all but 1 (grade 2 tachycardia) experienced at least 1 cardiovascular AE during ibrutinib treatment in ASPEN; no cardiovascular TEAE led to death in LTE1
- No resolved ibrutinib treatment-emergent atrial fibrillation/flutter recurred; no ongoing atrial fibrillation/flutter worsened following the transition to zanubrutinib
- One new case of atrial fibrillation occurred on LTE1 day 12 in a patient with an extensive cardiovascular history who also experienced grade 2 pericarditis 2 days prior (LTE1 day 10)
- Three patients, all with prior cardiovascular AEs on ibrutinib in the ASPEN study, developed pericarditis during the LTE1 study: on day 11, at 4 months, and at 9 months of zanubrutinib treatment, respectively; all cases resolved and were deemed unrelated to zanubrutinib by investigator

Table 2. TEAEs in Patients Participating in ASPEN and LTE1

Patients With ≥1 TEAE	ASPEN: Ibrutinib, n (%); N=47	LTE1: Zanubrutinib, n (%); N=47
TEAE	47 (100)	38 (80.9)
Treatment related	42 (89.4)	17 (36.2)

tolerating ibrutinib may switch to zanubrutinib without compromising, and may improve upon, safety or efficacy; long-term follow-up is ongoing

Figure 2. Recurrence or Continuation of Ibrutinib TEAEs on Zanubrutinib

NOS, not otherwise specified; TEAE, treatment-emergent adverse event.

Efficacy Results

- Categorical best overall response in LTE1 was unchanged from the last response in ASPEN in 34 patients (72%) and improved in 10 patients (21%; Table 5)
- One patient in partial response (PR) and 1 patient in very good partial response at the end of ASPEN had a deepening response, achieving a negative immunofixation in LTE1

^a Reasons for study discontinuation (5 patients): death (n=3), lost to follow-up (n=1), and withdrawal (n=1). ^b Reasons for treatment discontinuation (5 patients who left the study plus 2 who remained in the study): "other" reasons (n=3), AEs (n=2), PD (n=1), and withdrawal (n=1). AE, adverse event; DBL, database lock; *MYD88*, myeloid differentiation primary response 88; PD, progressive disease; R/R, relapsed/refractory.

RESULTS

Disposition

- Between June 26, 2020, and June 23, 2022, 47 patients treated with ibrutinib in ASPEN enrolled in LTE1
- Patient and disease characteristics are shown in Table 1
- At enrollment in LTE1, the median time since ibrutinib treatment initiation was 50.4 months (range, 26-59.3)
- As of June 23, 2023, 40 patients (85%) remained on study treatment; the median zanubrutinib treatment duration was 15.3 months (range, 5.1-22.1), and the overall median treatment duration with BTK inhibitors was 65.5 months (range, 48.1-76.7)
- The median time from ASPEN study discontinuation to zanubrutinib initiation in LTE1 was 0.07 months (range, 0-4)

Serious	22 (46.8)	6 (12.8)
Treatment related	15 (31.9)	_
Leading to treatment discontinuation	3 (6.4)	2 (4.3)ª
Leading to dose reduction	11 (23.4)	_
Leading to dose interruption	30 (63.8)	11 (23.4)
Fatal TEAE	_	2 (4.3) ^b

^a Hematuria, COVID-19 pneumonia. ^b Respiratory failure, COVID-19 pneumonia. TEAE, treatment-emergent adverse event.

Table 3. Serious/Grade ≥3 TEAEs in Patients Participating in LTE1

Grade ≥3 TEAEs	n (%); N=47
Hypertension	1 (2.1)
Anemia	2 (4.3)
COVID-19	3 (6.4)
Neutropenia	2 (4.3)
Serious TEAEs	n (%); N=47
Pneumonia	2 (4.3)

- One patient with last response assessment of PR in ASPEN after over 4 years on ibrutinib (local [IgM] at end of treatment already met criteria for minor response: decreased 45% from baseline) was assessed to be in minor response after 6 months ([IgM] 44% decreased from baseline) and 12 months ([IgM] 48% decreased from baseline) on zanubrutinib
- One patient had "no evidence of progressive disease," and 1 patient discontinued before response assessment
- [IgM] was stable or decreased in the majority of evaluable patients (Figure 3)

 Table 5. Overall Response Assessments in Patients Enrolled in ASPEN

 and LTE1

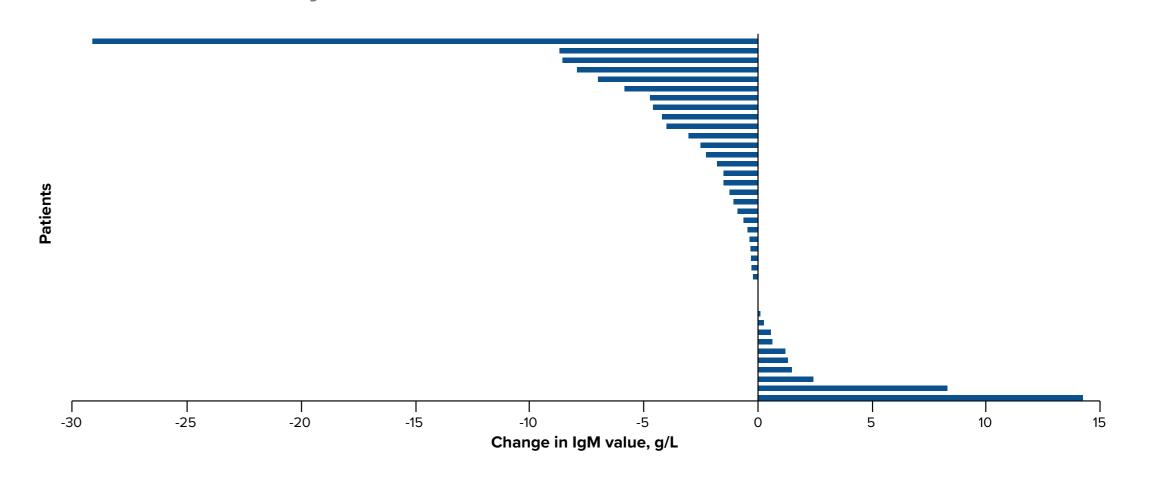
	ASPEN BOR	ASPEN Last RA	LTE1 BOR
Overall Response Assessment by PI		n (%); N=47	
CR	0	0	2 (4.3)
VGPR	15 (31.9)	13 (27.7)	17 (36.2)
PR	31 (66)	27 (57.4)	23 (48.9)
MR	1 (2.1)	3 (6.4)	3 (6.4)
IgM flare	N/A	1 (2.1)	N/A
PD	N/A	2 (4.3)	N/A
Not evaluable	N/A	1 (2.1)	N/A
No evidence of PD	N/A	N/A	1 (2.1)

Table 1. Baseline Demographics and Clinical Characteristics of EnrolledPatients as They Proceeded From ASPEN to LTE1 (N=47)

At Enrollment in Parent Stu (ASPEN)	ıdy
Age, median (range), years	68 (38-84)
Age group, n (%)	
<65 years	16 (34)
≥65 and <75 years	22 (46.8)
≥75 years	9 (19.1)
Male, n (%)	34 (72.3)
Treatment status, n (%)	
TN	10 (21.3)
R/R	37 (78.7)
Prior lines, median (range), n	1 (1-6)

TEAE, treatment-emergent adverse event.

Table 4. TEAEs of Interest in Patients Treated With Zanubrutinib in LTE1


AEs of Interest for Zanubrutinib	Any Grade, n (%); N=47	Grade ≥3, n (%); N=47
Infections	22 (46.8)	3 (6.4)
Hemorrhage	6 (12.8)	1 (2.1)
Second primary malignancies – skin cancer	4 (8.5)	_
Second primary malignancies – non-skin cancerª	1 (2.1)	_
Hypertension	1 (2.1)	1 (2.1)
Atrial fibrillation/flutter	1 (2.1)	_
Neutropenia ^b	5 (10.6)	2 (4.3)
Thrombocytopenia ^b	1 (2.1)	_
Anemia ^b	4 (8.5)	2 (4.3)

Discontinued prior to assessment N/A N/A 1 (2.1)

^a Grouped terms.

BOR, best overall response; CR, complete response (negative immunofixation, not confirmed by bone marrow biopsy); IgM, immunoglobulin M; MR, minor response; N/A, not applicable PD, progressive disease; PI, principal investigator; PR, partial response; RA, response assessment; VGPR, very good partial response.

Figure 3. Change in [IgM] From Last Response Assessment in ASPEN Study to BOR in LTE1 Study

BOR, best overall response; IgM, immunoglobulin M.

REFERENCES

 1. Castillo J, et al. Am J Hematol. 2023 ;98(2):338-347.
 2. Guo Y, et al. J Med Chem. 2019 ;62(17):7923-7940.
 3.

3. Tam C, et al. *Blood*. 2020 ;136(18):2038-2050.

ACKNOWLEDGMENTS

This study was sponsored by BeiGene, Ltd. Editorial assistance was provided by Nucleus Global, an Inizio company, and supported by BeiGene.

ECOG, Eastern Cooperative Oncology Group; R/R, relapsed/refractory; TN, treatment naïve.

^a Prostate cancer. ^b Grouped terms.
 AE, adverse event; TEAE, treatment-emergent adverse event.

Presented at the 44th SFH Annual Meeting; March 27-29, 2024; Paris, France.

CORRESPONDENCE: Olivier Tournilhac, otournilhac@chu-clermontferrand.fr

Data originally presented at the 65th ASH Annual Meeting and Exposition; December 9-12, 2023, San Diego, CA. Abstract 3043