Exploratory Analysis of Peripheral Pharmacodynamic (PD) Biomarkers After Sitravatinib (Sitra) and Tislelizumab (TIS) in Advanced Solid Tumors: SAFFRON-103

Authors: Yi-Long Wu,^{1*} Bo Gao,² Jeffrey C Goh,³ Jun Zhao,⁴ Zhiyong Ma,⁵ Jiuwei Cui,⁶ Xinmin Yu,⁷ Dingzhi Huang, ⁸Daphne Day,⁹ Mark Voskoboynik,¹⁰ Qian Chu,¹¹ Qing Zhou,¹ Michael Millward,¹² Hongming Pan,¹³ Meili Sun,¹⁴ Yanyan Peng,¹⁵ Mo Liu,¹⁶ Tian Tian,¹⁷ Hui li,¹⁸ Jun Guo¹⁹

*First and presenting author

Affiliations:

¹Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; ²Department of Medical Oncology, Blacktown Cancer and Haematology Centre, Sydney, Australia; ³Department of Medical Oncology, Icon Cancer Foundation, Brisbane, Australia; ⁴Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China; ⁵Department of Respiratory Medicine, Henan Cancer Hospital/Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China; ⁶Department of Oncology, The First Bethune Hospital of Jilin University, Changchun, China; ⁷Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China; ⁸Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; ⁹Department of Oncology, Monash Health and Monash University, Clayton, Australia; ¹⁰Department of Oncology, The Alfred Hospital, Melbourne, Australia; ¹¹Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ¹²Linear Clinical Research and University of Western Australia, Perth, Australia; ¹³Department of Medical Oncology, Sir RunRun Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; ¹⁴Department of Oncology Internal Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, China; ¹⁵Biomarkers, BeiGene (Shanghai) Co., Ltd., Shanghai, China; ¹⁶Bioinformatics, BeiGene (Beijing) Co., Ltd., Beijing, China; ¹⁷Global Statistics, BeiGene (Beijing) Co., Ltd., Beijing, China; ¹⁸Research and Development, BeiGene (Shanghai) Co., Ltd., Shanghai, *China;* ¹⁹*Department of Urology and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.*

Background: Sitra is a spectrum-selective tyrosine kinase inhibitor targeting multiple receptors, including VEGFR2. Here, we present an exploratory analysis of PD biomarkers in SAFFRON-103, a phase 1b study investigating Sitra with TIS, an anti-PD-1 antibody, in patients (pts) with solid tumors including advanced non-squamous-non-small cell lung cancer (NSCLC), squamous-NSCLC, melanoma, or ovarian cancer.

Methods: Peripheral blood samples were collected at Cycle (C) 1 Day (D) 1, C2D1, and C3D1 prior to Sitra dosing, to investigate changes in cytokines (Meso Scale Discovery [MSD] multiplexing), plasma proteins (ELISA), and immune cell populations (fluorescence-activated cell sorting [FACS]). Generalized linear mixed models were used to estimate fold change and analyze biomarker changes; Wald tests were used to generate *P*-values.

Results: Baseline characteristics were balanced across pts with evaluable biomarker results (n=186 cytokines/plasma proteins, n=113 immune cell populations) and in the overall population (N=216). For all pts, changes in individual biomarker levels were consistent from C1D1 to both C2D1 and C3D1, with significant increases in VEGFA (*P*<0.0001; both) and CXCL10 (*P*<0.0001; both) and significant decreases across soluble (s) VEGFR2 (*P*<0.0001; both), peripheral G-MDSCs (*P*=0.0005; *P*=0.0002), and monocytes (*P*<0.0001; both). Estimated fold changes of PD biomarkers across tumor types are shown (Table). Changes in VEGFA (increased) and monocytes (decreased) after treatment (C2D1/C1D1) were associated with improved objective response rates (odds ratio [OR] 4.67, *P*=0.0005; OR 5.82, *P*<0.0001).

Conclusions: VEGFA increased and sVEGFR2 decreased consistently and significantly after Sitra plus TIS therapy, demonstrating the on-target anti-angiogenesis effect of Sitra. Decrease of G-MDSCs and monocytes in peripheral blood indicates a potential immune-modulating role for Sitra with TIS.

Table

Estimated fold change from C1D1	Non-squamous- NSCLC		Squamous-NSCLC		Melanoma		Ovarian cancer	
	C2D1	C3D1	C2D1	C3D1	C2D1	C3D1	C2D1	C3D1
ELISA/MSD eligible	n=60		n=48		n=22		n=54	
VEFGA	2.77	2.65	2.53	2.53	2.89	2.38	2.16	2.14
sVEFGR2	0.67	0.63	0.61	0.59	0.65	0.66	0.70	0.69
CXCL10	1.70	1.97	1.65	1.43	1.75	1.44	2.21	1.90
FACS eligible	n=44		n=21		n=10		n=28	
G-MDSCs	0.74	0.71	0.59	0.60	0.83	0.74	0.81	0.84
Monocytes	0.70	0.72	0.72	0.64	0.73	0.72	0.81	0.85
Abbreviations: G-MDSC, granulocyte-like myeloid derived suppressor cells; NSCLC, non-small cell lung cancer; VEFGA, vascular endothelial growth factor A; sVERGR2, soluble vascular endothelial growth factor receptor 2								