ASSOCIATION BETWEEN IMMUNE AND TUMOR GENE SIGNATURES WITH RESPONSE OR RESISTANCE TO TISLELIZUMAB MONOTHERAPY OR IN COMBINATION WITH CHEMOTHERAPY IN GASTROESOPHAGEAL ADENOCARCINOMA

¹The Fifth Medical Center, General Hospital of Chinese People's Liberation Army, Beijing, China; ²Zhongshan Hospital Fudan University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea; ⁴Harbin Medical University Cancer Hospital, Harbin, China; ⁵Taipei Veterans General Hospital, Taipei, Taiwan; ⁶BeiGene (Beijing) Co., Ltd., Beijing, China; ⁷Peking University Cancer Hospital & Institute, Beijing, China

BACKGROUND

- Gastroesophageal adenocarcinoma (GEA), including gastric, gastroesophageal junction (GEJ), and esophageal adenocarcinoma (EAC), has been associated with high mortality and has a low 5-year overall survival rate^{1,2} when diagnosed in advanced stage
- While recently approved PD-1 inhibitors have shown moderate clinical benefit, identification of biomarkers that can predict response is of urgent need
- Exploring immune- and tumor-transcriptomic features and their association with anti-PD(L)1 efficacy may increase the understanding of the tumor microenvironment in GEA and aid in the identification of potential response/resistance mechanisms
- Tislelizumab, an anti–PD-1 monoclonal antibody, has been approved by the China National Medical Products Administration (NMPA) as a treatment for patients with classical Hodgkin's lymphoma and for patients with locally advanced or metastatic urothelial carcinoma (UC) with PD-L1 high expression
- Tislelizumab also demonstrated clinical benefit in patients with GEA as a single agent (NCT02407990 and NCT04068519) and in combination with chemotherapy (NCT03469557)^{3,4,}
- Here we present the retrospective association analysis of immune and tumor gene signatures with clinical efficacy from these studies

METHODS

Study Design

- Pooled analysis from three clinical trials
- BGB-A317-001 (NCT02407990): first-in-human, multicenter, phase1a/1b dose-escalation/indication-expansion study
- Samples were analyzed from patients with advanced or metastatic gastric/GEJ adenocarcinoma and EAC
- BGB-A317-102 (NCT04068519): Chinese, multicenter, phase1/2 study
- Samples were analyzed from patients with previously treated/untreated advanced or metastatic gastric/GEJ adenocarcinoma
- BGB-A317-205 (NCT03469557): phase 2 first-line study of tislelizumab plus oxaliplatin and capecitabine in Chinese patients
- Samples were analyzed from patients with locally advanced or metastatic HER2-negative gastric/GEJ adenocarcinoma

Gene Expression Profiling

- Gene expression profiling (GEP) using the HTG EdgeSeq Precision Immuno-Oncology Panel was performed on baseline tumor samples (formalin-fixed, paraffin-embedded blocks or cut slides)
- Signature scores were calculated using the Gene Set Variation Analysis (GSVA) package with publicly available gene signatures
- Differentially expressed gene signature (DEG) analysis was performed between responders and nonresponders using a Wilcoxon rank-sum test
- Nonresponder subgroups were hierarchically clustered by Euclidean distance metrics with average linkage by columns

Statistical Analysis

- Statistical significance was tested using a two-sided Wilcoxon test
- Potential associations with survival were analyzed using a log-rank test and Cox proportional hazards model

RESULTS

Patient Characteristics

• Of 120 enrolled patients, 87 had samples evaluable for GEP analysis (Table 1)

Characteristic		
Age, n (%)	<65	
0	≥65	
Sex n(%)	Male	
	Female	
	Poorly c	
HISTOIOGIC arade at	Modera	
baseline, n (%)	Well dif	
	Unknov	
Tumor type,	Gastric/	
n (%)	EAC	
	Adenoc	
Histological	Signet r	
type, ii (70)	Others	
Tumor stage,	III	
n (%)	IV	
	PR	
D	SD	
Response,	PD	
11 (70)	Non-CR	

ORR,% (95% CI)

Median PFS, months (95 Median OS, months (95 Median follow up, mont

Association of IFNy-related Gene Signature With Clinical Outcomes of **Tislezumab Monotherapy**

0.4 **5** 0.0 S **≥**-0.4-

		(n=37)		
	ORR	16.2%		
	DCR	32.4%		
	PR	16.2%		
	SD	16.2%		
	PD	54.1%		
Abbreviations: BEP, bleomy esponse rate; PD, progressi				

Jianming Xu¹, Tianshu Liu², Jong-Seok Lee³, Yuxian Bai⁴, Yee Chao⁵, Silu Yang⁶, Yun Zhang⁶, Xiaopeng Ma⁶, Pei Zhang⁶, Jianfei Zheng⁶, Yanyan Li⁶, Jin Wang⁶, Lin Shen⁷

Table 1: Baseline Characteristics and Clinical Outcome

	Monotherapy		Combination Therapy		
	GEP (n=75)	Overall (n=105)	GEP (n=12)	Overall (n=15)	
	51 (68)	66 (62.9)	9 (75)	10 (66.7)	
	24 (32)	39 (37.1)	3 (25)	5 (33.3)	
	51 (68)	72 (68.6)	10 (83.3)	11 (73.3)	
	24 (32)	33 (31.4)	2 (16.7)	4 (26.7)	
fferentiated	32 (42.7)	49 (46.7)	8 (66.7)	9 (60)	
ely differentiated	31 (41.3)	39 (37.1)	1 (8.3)	2 (13.3)	
erentiated	2 (2.7)	2 (1.9)	1 (8.3)	1 (6.7)	
า	10 (13.3)	15 (14.3)	2 (16.7)	3 (20)	
EJ adenocarcinoma	53 (70.7)	93 (77.5)	12 (100)	15 (100)	
	22 (29.3)	27 (22.5)	0(0)	0(0)	
rcinoma	65 (86.7)	87 (82.9)	0(0)	0(0)	
ng cell carcinoma	3 (4)	4 (3.8)	0(0)	0(0)	
	7 (9.3)	14 (13.3)	12 (100)	15 (100)	
	4 (5.3)	5 (4.8)	1 (8.3)	1 (6.7)	
	71 (94.7)	100 (95.2)	11 (91.7)	14 (93.3)	
	7 (9.3)	12 (11.4)	6 (50)	7 (46.7)	
	12 (16)	20 (19)	2 (16.7)	3 (20)	
	41 (54.7)	55 (52.4)	1 (8.3)	1 (6.7)	
Non-PD	0(0)	0(0)	2 (16.7)	2 (13.3)	
	15 (20)	18 (17.1)	1 (8.3)	2 (13.3)	
	9.3 (3.8, 18.3)	11.4 (6.0, 19.1)	50 (21.1, 78.9)	46.7 (21.3, 73.4)	
5% CI)	1.97 (1.68, 2.10)	2.05 (1.94, 2.14)	6.11 (2.76, NR)	6.11 (3.78, NR)	
% CI)	5.26 (3.78, 7.29)	5.65 (4.27, 8.64)	NR (5.88, NR)	NR (7.03, NR)	
ths (95% CI)	14.4 (13.9, 21.2)	14.5 (13.9, 18.2)	15.5 (14.7, 17.2)	15.4 (14.7, 17.2)	

GEP, gene expression profiling; NA, not available; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; SD, stable disease.

• A 6-gene IFNγ signature (IFNγ, CXCL9, CXCL10, IDO1, STAT1 and HLA-DRA)⁶ was significantly increased in tumors from responders (R) versus non-responders (NR) as revealed by DEG and Box-plot analysis (LogFC=0.35, P=0.041, Figure 1A)

 With a median IFN
 ignature cutoff at -0.076, higher objective response rates (ORR) were observed in patients with IFNγ-high versus -low (ORR=16.2% vs 2.6%; Figure 1B); moreover, 9/11 patients with durable progression-free survival (PFS) $(\geq 6 \text{ months})$ were IFN γ -high (Figure 1C)

- A longer PFS trend was linked to patients with a high IFNγ signature (Figure 2A)
- Significant improvement of OS was observed in patients with IFNγ-high versus IFNγlow signatures (median OS: 9.13 vs 3.82, P=0.003) (Figure 2B)

• There was no significant association between an IFNγ signature and the clinicopathologic characteristics listed in Table 2

Table 2: Association of IFNy Signature With Clinicopathologic Characteristics

Characteristics		Sample Size, N	IFNγ-high, n (%)	IFNγ-low, n (%)	P-value*	
All patients		75	37 (49.3)	38 (50.7)	-	
Age	<65	51	22 (43.1)	29 (56.9)	0 100	
	≥65	24	15 (62.5)	9 (37.5)	0.188	
Con	Male	51	26 (51)	25 (49)	0.866	
Sex	Female	24	11 (45.8)	13 (54.2)		
	Poorly differentiated	32	19 (59.4)	13 (40.6)		
Histologic grade	Moderately differentiated	31	15 (48.4)	16 (51.6)	0 1 0 1	
at baseline	Well differentiated	2	1 (50)	1 (50)	0.191	
	Unknown	10	2 (20)	8 (80)		
T	Gastric/GEJ adenocarcinoma	53	25 (47.2)	28 (52.8)		
iumor site	EAC	22	12 (54.5)	10 (45.5)	0.743	
	Adenocarcinoma	65	32 (49.2)	33 (50.8)		
Histological type	Signet ring cell carcinoma	3	0(0)	3 (100)	0.117	
	Unknown	7	5 (71.4)	2 (28.6)		
ECOG	0	26	14 (53.8)	12 (46.2)	\bigcirc 7 / /	
peformance score	≥1	49	23 (46.9)	26 (53.1)	0.744	
D	Asian	34	18 (52.9)	16 (47.1)	0 7 2 /	
касе	Non-Asian	41	19 (46.3)	22 (53.7)	0./36	
T	III	4	1 (25)	3 (75)	0.627	
lumor stage	IV	71	36 (50.7)	35 (49.3)		
	0	9	5 (55.6)	4 (44.4)		
Number of lines	1	28	13 (46.4)	15 (53.6)	0.756	
of prior systemic	2	19	11 (57.9)	8 (42.1)		
	≥3	19	8 (42.1)	11 (57.9)		

*Chi-square test. Abbreviations: EAC, esophageal adenocarcinoma; ECOG PS, Eastern Cooperative Oncology Group; GEJ, gastroesophageal junction.

 Monotherapy NRs could be clustered into four distinct GEP subgroups according to immune and gene signatures listed in Table 3

Table 3: Immune and Tumor Gene Signatures Utilized for NR Subgroup Clustering

Tumor Immunogenicity	Tumor Sensitivity to Immune Attack	Antitumor Immune Activity	Immune Cell Population Abundance		Feature of Tumor
Antigen presentation	DNA damage repair	INFγ	CD8	MDSC	EMT
Cancer antigen	Tumor proliferation	Cytotoxicity	Exhausted CD8	T-reg	Cell adhesion
	Apoptosis	Inflammatory	Macrophage	NK cell	Angiogenesis
			Neutrophil	CD45	Нурохіа
			Mast cell	B cell	NF-kB
			Dendritic cell		

Abbreviations: EMT, epithelial-mesenchymal transition; MDSC, myeloid derived suppressor cell

- The OS and differentiated expressed gene signatures among distinct NR subgroups and R are shown in Figure 3A (Log-rank P<0.0001) and Figure 3B, respectively
- **NR-A** and **NR-B** had significantly lower IFN γ signatures⁶ (P=0.013 and P=0.0007, respectively) than the responder group; compared with NR-A (mOS=9.46 months), **NR-B** had significantly decreased CD45+⁷ and NK cell⁷ (P=0.001 and P=0.0001) signatures, and the lowest median OS (3.81 months)
- **NR-C** had a decreased NK cell signature (*P*=0.030) and trend toward an elevated cell cycle signature⁸ (P=0.094), as well as relatively low median OS (5.55 months), despite having a comparable IFN_γ signature level with responders **NR-D** had the highest angiogenesis⁹ (P=0.022) and macrophage⁷ (P=0.035) signatures, with a median OS of 9.13 months

of Tislelizumab Monotherapy

Abstract: 3115

American Society of Clinical Oncology May 29-31, 2020, Chicago, IL

CONCLUSIONS

- These findings increase the understanding of tumor-immune profiles in GEA and their association with clinical efficacy of anti-PD1 monotherapy by identifying a 6-gene IFNγ signature as a potential biomarker of response, and multiple gene signatures that may indicate resistance:
- Higher IFNy signatures were associated with favorable clinical benefit in GEA patients receiving tislelizumab monotherapy
- Compared with responders, elevated angiogenesis, macrophage, cell cycle, or decreased NK signatures were observed in distinct nonresponder subgroups of tislelizumab monotherapy, respectively
- The association between these tumor-immune profiles and clinical efficacy of tislelizumab plus chemotherapy varied from monotherapy
- Further validation will be considered in an ongoing phase 3 study designed to compare tislelizumab plus platinum/fluoropyrimidine versus placebo plus platinum/fluoropyrimidine as first-line therapy for patients with locally advanced or metastatic Gastric/GEJ adenocarcinoma (NCT03777657)
- Unlike patients receiving monotherapy, responders to combination therapy showed high cell cycle gene expression signatures (Figure 4A)
- Non-responders had numerically higher angiogenesis signatures versus responders; single gene DEG analysis revealed VEGFA was highly expressed in nonresponders, suggesting angiogenesis may potentially be associated with resistance to tislelizumab/chemotherapy (Figure 4B)

REFERENCES

ASCO[®] and the author of this poster.

1. Ajani, J., Lee, J., Sano, T. et al. Nat Rev Dis Primers. 2017; 3:170 2. Rubenstein JH, Shaheen NJ. *Gastroenterology*. 2015;149(2):302-317.e1. 3. Desai J, Millward M, Chao Y, et al. *Ann Oncol.* 2017;28(suppl 5): mdx367.02

Oncology Congress; September 18-22, 2019; Xiamen, China

5. Xu R, Arkenau T, Bang Y, et al. J Clin Oncol. 2019;37(suppl):Abstract TPS2655. 6. Seiwert T, Burtness B, Mehra R, et al. *Lancet Oncol.* 2016;17(7):956-965.

- 7. Danaher P, Warren S, Rongze L, et al. J ImmunoTher Cancer. 2018;6:63. 4. Shen L, Yuan Y, Bai Y, et al. Presented at: 22nd Annual Chinese Society for Clinical 8. Tirosh I, Izar B, Prakadan SM, et al. Science. 2016;352(6282):189-196.
 - 9. Patwardhan P, Ivy K, Musi E, et al. Oncotarget. 2016;7:4093-4109.

ACKNOWLEDGMENTS The authors wish to acknowledge the investigative centers' study staff and study patients, and to recognize those from BeiGene, Ltd. who have substantially contributed to the development of this presentation. This study was sponsored by BeiGene, Ltd. Writing and editorial assistance was provided by Stephan Lindsey, PhD, and Elizabeth Hermans, PhD (OPEN Health Medical Communications, Chicago, IL), and funded by the studv sponsor. Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission

Please address any questions or comments regarding this poster to Clinicaltrials@beigene.com