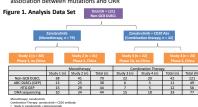


BIOMARKER IDENTIFICATION IN RELAPSED/REFRACTORY NON-GERMINAL CENTER B-CELL— LIKE DIFFUSE LARGE B-CELL LYMPHOMA TREATED WITH ZANUBRUTINIB

Haiyan Yang^{1*}, Yufu Li², Sung Yong Oh³, Jianfeng Zhou⁴, Constantine S. Tam^{5,6}, Yiling Yu^{8,9}, Yang Liu^{8,9}, Xiaopeng Ma^{8,9}, Hui Yao^{8,9}, Weige Wang^{8,9}, Hongjie Zhu^{8,9}, Wenxiao Zhou^{8,9}, Lirong Shen^{8,9}, Lai Wang^{8,9}, Jane Huang^{8,10}, Oingyuan Zhang¹


¹Zhejiang Cancer Hospital, Hangzhou, China, ²Henan Cancer Hospital, Zhengzhou, China, ³Dong-A University Medical Center, Busan, Republic of Korea, ⁴Tongji Hospital of Tongji Medical College of Huangzhong University, Wuhan, China, ³University of Melbourne, Melbourne, Melbourne, Australia, ⁴Bei/Gene (Shanghai) Co., Lid, Shanghai, China, ³Bei/Gene (Beijing) Co., Lid, Beijing, China, ⁴Bei/Gene (USA, Inc., Sanco, United States, ⁴The Affliated Tumor Hospital of Harbin Medical University, Harbin, China, ⁴Bei/Gene (Beijing) Co., Lid, Shanghai, China, ⁴Bei/Gene (Beijing) Co., Lid, Beijing, China, ⁴Bei/Gene (Beijing) Co., Lid, ⁴Bei/Gene (Beijing)

INTRODUCTION

- The non-germinal center B-cell-like (non-GCB) subtype of diffuse large B-cell lymphoma (DLBCL) is associated with poor clinical outcomes.1
- Zanubrutinib. a highly selective covalent Bruton's tyrosine kinase (BTK) inhibitor, was specifically engineered to decrease toxicities and improve tumor tissue distribution.2
- Inhibitors of BTK have established therapeutic activity in mantle cell lymphoma, chronic lymphocytic leukemia, and Waldenström macroglobulinemia and have shown modest activity in DLBCL.3
- Biomarker identification has gradually become the focus of DLBCL research.
- Here we report zanubrutinib efficacy and biomarker identification in relapsed/refractory (R/R) non-GCB DLBCL from four clinical studies.

METHODS

- 121 R/R DLBCL patients from 4 zanubrutinib studies were included in
- 2 Monotherapy (zanubrutinib alone) studies and 2 Combination Therapy (Zanubrutinib plus anti-CD20 antibody) studies were included
- Similar eligibility criteria and response assessment criteria cross different
- Patients distribution and analysis data set shown in Figure 1.
- Patient assessments
- Response: objective response rate (ORR) according to Lugano classification 2014
- GEP subtyping: performed by HTG EdgeSeq DLBCL Cell of Origin Assay using tumor FFPE samples collected before study drug treatment
- RNA-expression: gene expression readout by GEP subtyping assay were further analyzed by R package limma for correlation with response to zanubrutinib treatment
- · DNA-sequencing: tumor FFPE samples were tested by next generation sequencing (NGS) and Chi-square test was used to evaluate the association between mutations and ORR

RESULTS

The unadjusted ORR in non-GCB DLBCL was similar across the four studies with an average of 30%. Median PFS of the four zanubrutinib studies ranged from 2.8m to 4.9m, and median OS ranged from 8.4m to 11.8m. (Table 1)

Table 1. Efficacy of Zanubrutinib in Non-GCB DLBCL

	Monotherapy			Combination Therapy			
	Study 1 (n=38)	Study 2 (n=41)	Total (n=79)	Study 3 (n=22)	Study 4 (n=20)	Total (n=42)	Total (N=121)
ORR, n (%)	12 (31.6)	12 (29.3)	24 (30.4)	5 (22.7)	7 (35.0)	12 (28.6)	36 (29.8)
95% CI a	(17.50, 4 8.65)	(16.13, 45.5 4)	(20.53, 41 .75)	(7.82, 45.3 7)	(15.39, 59. 22)	(15.72, 44 .58)	(21.79, 38. 74)
mPFS (Mo nths) ^b	3.5	2.8	2.8	4.9	3.5	3.5	3.1
95% CI	(1.97, 5. 52)	(2.56, 5.45)	(2.60, 4.8	(1.71, 10.58)	(2.69, 5.55	(2.69, 5.6 2)	(2.73, 4.9
mOS (Mon ths) ^b	11.8	8.4	8.8	11.8	10.3	11.6	9.9
95% CI	(5.09, 22 .11)	(4.80, NE)	(5.52, 14. 92)	(3.52, 16.53)	(5.39, NE)	(6.77, 15. 21)	(6.80, 13.1 7)

- monaturerapy: zanubrutinib + CD20 antibody
 Study 3: zanubrutinib + obinuturumab
 Study 3: zanubrutinib + obinuturumab
 Study 4: zanubrutinib + rituximab
 ORR-Objective Response Rate
 mPFS: median Progression-Free Survival
 mOS: median Overall Survival

- Crowley. Data cut: Study 1 September 9, 2019; Study 2 August 31, 2019; Study 3 August 31, 2019; Study 4 -
- For 49 patients with GEP-confirmed activated B-cell (ABC) DLBCL classification, the ORR tended to be higher than non-GCB DLBCL although the number was small. The ORR was comparable for monotherapy (42%) and combination therapy (46%) for those with ABC-

Table 2. Unadjusted ORR of Zanubrutinih in ARC-DIRCI

	, , , , , , , , , , , , , , , , , , ,						
	Monotherapy			Combination Therapy			
	Study 1 (n=13)	Study 2 (n=25)	Total (n=38)	Study 3 (n=6)	Study 4 (n=5)	Total (n=11)	Total (N=49)
ORR, n (%)	7 (53.8)	9 (36.0)	16 (42.1)	3 (50.0)	2 (40.0)	5 (45.5)	21 (42.9
95% CI	(25.13, 80.78)	(17.97, 57.4 8)	(26.31, 5 9.18)	(11.81, 88 .19)	(5.27, 85.3 4)	(16.75, 7 6.62)	(28.82, 57 .79)

- Combination Therapy: zanubrutinib + CD20 antibody Study 3: zanubrutinib + obinutuzumab
- Study 4: zanubrutinib + rituximab
- ORR:Objective Response Rate CI was calculated using the CI d using the Clopper-Pearson method Data cut: Study 1 - September 9, 2019; Study 2 - August 31, 2019; Study 3 - August 31, 2019; Study
- For the 56 non-GCB patients with HTG gene expression profiles, PAX5 expression was higher in monotherapy responders than non-responders (Figure 2A), and PIM1, BCL2, and FOXP1 expression was higher in combination

therapy responders than non-responders (Figure 2B).

Figure 2A. Genes Enrichment Analysis by Response to Zanubrutinib Monotherapy

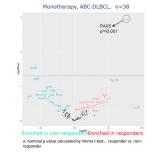
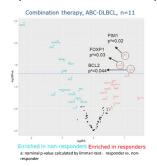
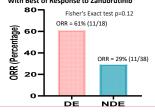




Figure 2B. Genes Enrichment Analysis by Response to Zanubrutinib Combination Therapy

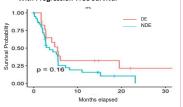

· Patients with MYC and BCL2 double-expressor DLBCL tended to have higher ORRs (11/18, 61% vs 11/38, 29%; P = 0.12) (Figure 3A) and longer progressionfree survival (5.4 months vs 3.6 months; P = 0.16) (Figure 3B) and overall survival (10 months vs 7 months, P = 0.32) (Figure 3C).

Figure 3A. Correlation of BCL2/MYC Expression With Best of Response to Zanubrutinib

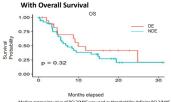

Median expression value of BCL2/MYC was used as threshold for defining BCL2/MYC high or low
DE: BCL2 and MYC double high expression by GEP
NDE: other than BCL2 and MYC double high expression by GEF

Figure 3B. Correlation of BCL2/MYC Expression With Progression-Free Survival

value of BCL2/MYC was used as threshold for defining BCL2/MYC DE: BCL2 and MYC double high expression by GEP NDE: other than BCL2 and MYC double high expres

Figure 3C. Correlation of BCL2/MYC Expression

Median expression value of BCL2/MYC was used as threshold for defining BCL2/MYC DE: BCL2 and MYC double high expression by GEP NDE: other than BCL2 and MYC double high expression by GEP

Patients with MYC and BCL2 double-expressor For the 77 patients with NGS panel data, non-GCB DLBCL with CD79B mutations (n = 25) showed significantly higher ORR than patients without CD79B mutations (n = 52) in the pooled analysis (60% vs 26.9%; P = 0.005). All three patients with NOTCH1 mutations responded to zanubrutinib monotherapy. The adjusted results showed a similar signal (Table 3).

Table 3. Correlation of CD79B/NOTCH1 Mutations With Response to Zanubrutinih

	Monotherapy (n = 44)	Combination Therapy (n = 33)	Total (N = 77)	
CD798				
CD798****	9/17 52.9	6/8 75.0	15/25 60.0	
CD798 ^{W7}	9/27 33.3	5/25 20.0	14/52 26.9	
Difference in ORR (\$5% CI) *	19.6 (-10.20, 46.87)	55.0 (15.75, 78.76)	33.1 (9.60, 53.57	
P-value *	0.1977	0.0041	0.0050	
Adjusted P-value ¹			0.0104	
NOTCH1				
NOTCH1 ^{mul}	3/3 100.0	2/5 40.0	5/8 62.5	
NOTCH1 ^{MT}	15/41 36.6	9/28 32.1	24/69 34.8	
Difference in ORR (\$5% CI) *	63.4 (4.48, 76.54)	7.9 (-27.98, 49.62)	27.7 (-6.78, 54.80	
P-value *	0.0310	0.7314	0.1256	
Adjusted P-value *			0.0525	

Monotherapy, zandrutinib
Combination Fhenzy, randrutinib + C020 antibody (obinutuzumab or ritusimab)
**Difference 95% CI were based on Miettinen and Narminen method.
**Chi-square test is used to compute y-aulue.
**Multivariate regression model is used to compute p-value with adjustment for baseline covariates and

CONCLUSIONS

- · Zanubrutinib alone or in combination with an anti-CD20 antibody (obinutuzumab or rituximab) showed activity in the overall non-GCB DLBCL population.
- · The retrospective biomarker analysis identified subsets of patients (such as PAX5 high or with CD79B mutations) with higher response rates to zanubrutinib treatment.

ACKNOWLEDGEMENTS

We would like to thank the investigators, site support staff, and especially the patients for participating in this study and providing samples.

This work was sponsored by BeiGene.

REFERENCES

- 1. Ash A. Alizadeh, et al. Nature 403, 503-511(2000) 2. Yunhang Guo, et al. J. Med. Chem. 2019, 62, 7923-7940
- 3. M. Jerkeman, et al. Journal of Internal Medicine, 2017, 282: 415-428

CONTACT INFORMATION

Haiyan Yang, MD (presenting author) Email: haiyuanyang1125@163.com Qingyuan Zhang, MD (corresponding author)

Email: 13313612989@163.com