RATIONALE-309: Effects of Tislelizumab on Health-Related Quality of Life (HRQoL) in Patients with Recurrent or Metastatic Nasopharyngeal Cancer (R/M NPC)

Yunpeng Yang*1, Jianji Pan2, Nianyong Chen3, Yanjie Wu4, Shiangjiin Leaw4, Fan Bai4, Yu Wang4, Na Zhao4, Boxiong Tang5, Gisoo Barnes5

*First and presenting author
1Sun Yat-sen University Cancer Center, Guangzhou, China; 2Fujian Cancer Hospital, Fuzhou, China; 3West China Hospital of Sichuan University, Chengdu, China; 4BeiGene (Shanghai) Co., Ltd., Shanghai, China; 5Beigene Ltd, Emeryville, California
DECLARATION OF INTERESTS

Yunpeng Yang, MD

Received research funding from Beigene Ltd.
Patients with nasopharyngeal cancer (NPC) suffer from significant declines in health-related quality of life (HRQoL)\(^1\)-\(^6\)

- HRQoL is an important patient-reported outcome (PRO) that may impact the mortality risk for patients with NPC\(^7\)

Liver metastases (LM) in NPC patients is considered as a significant negative prognostic factor for overall survival and cancer-specific survival for patients with NPC\(^8\)-\(^{11}\)

- The presence of liver metastasis in patients with NPC is significantly associated with poor response to chemotherapy\(^1\),\(^2\)

Yunpeng Yang, MD
Background (2 of 2)

- RATIONALE-309 (NCT03924986) - double-blinded, randomized, phase 3 study
 - Tislelizumab + gemcitabine and cisplatin (tisle + chemo) vs placebo + gemcitabine and cisplatin (placebo + chemo) as first-line treatment for recurrent or metastatic (R/M) NPC
 - Significant improvement in progression-free survival for Tisle + chemo compared to placebo + chemo (median progression free survival (PFS): 9.6 vs 7.4 months, respectively; hazard ratio [HR]=0.50, 95% confidence interval [CI]: 0.37, 0.68)
 - mPFS2 was not reached for the tisle + chemo arm and was 13.9 months for the placebo + chemo arm (HR=0.38, 95% CI: 0.25, 0.58)
- The objective of this analysis was to evaluate the impact of tisle + chemo on patients’ HRQoL and NPC-related symptoms
 - Post-hoc analysis also explored HRQoL and NPC-related symptoms in patients with LM
Study Design: Randomized, Double-Blind, Phase 3 Trial

Method (1 of 2)

Key eligibility criteria:
- Histologically or cytologically confirmed R/M NPC
- Treatment-naïve*
- Age 18–75 years
- ≥ 1 measurable lesion (RECIST v1.1)
- ECOG PS ≤ 1

Stratification factors:
- Gender (male vs female)
- Liver metastases (yes vs no)

PRO endpoints:
- The European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core 30 items (QLQ-C30): global health status/quality of life (GHS/QoL), physical functioning, and fatigue
- EORTC Head and Neck Module (QLQ-H&N35): symptom index, pain, senses, and speech problems scales

Randomized, Double-Blind, Phase 3 Trial

- **Tisle + chemo**
 - Tislelizumab 200 mg IV D1 (Q3W)
 - Gemcitabine 1 g/m² IV D1, D8 + cisplatin 80 mg/m² IV D1(Q3W, 4–6 cycles)

- **Placebo + chemo**
 - Placebo 200 mg IV D1 (Q3W)
 - Gemcitabine 1 g/m² IV D1, D8 + cisplatin 80 mg/m² IV D1(Q3W, 4–6 cycles)

Until disease progression, intolerable toxicity, death, or withdrawal of consent

Crossover to tislelizumab monotherapy (200 mg IV Q3W) only if progressive disease and investigator considers clinically beneficial (not all patients)

Tislelizumab monotherapy (200 mg IV Q3W) if investigator considers clinically beneficial
Method (2 of 2)

- The key clinical cycles were cycle 4 and cycle 8 and were selected to measure change in PRO endpoints representing during chemotherapy (cycle 4) as well as after chemotherapy (cycle 8).
- Two sets of analyses were conducted for the PRO endpoints: intent-to-treat (or, ITT) population and intent-to-treat (or, ITT) population with liver metastasis (or the LM subgroup) were conducted.
- Change from baseline in each key PRO endpoint to cycle 4 and cycle 8 was analyzed using the linear mixed effect model for repeated measures.
- Time to deterioration (TTD) for each key PRO endpoint was assessed in both the full ITT population and the LM subgroup.
 - TTD was defined as the time from randomization to first onset time at which deterioration is as defined by ≥10-point change from baseline in the direction of worsening for two consecutive assessments or 1 assessment followed by death from any cause within 3 weeks.
Results

Patients Demographics

<table>
<thead>
<tr>
<th></th>
<th>Tisle + chemo (N = 131)</th>
<th>Placebo + chemo (N = 132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Min, Max</td>
<td>26, 74</td>
<td>23, 73</td>
</tr>
<tr>
<td>Age Group, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 65 years</td>
<td>121 (92.4)</td>
<td>120 (90.9)</td>
</tr>
<tr>
<td>≥ 65 years</td>
<td>10 (7.6)</td>
<td>12 (9.1)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>103 (78.6)</td>
<td>103 (78.0)</td>
</tr>
<tr>
<td>Female</td>
<td>28 (21.4)</td>
<td>29 (22.0)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>131 (100.0)</td>
<td>132 (100.0)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>131 (100.0)</td>
<td>132 (100.0)</td>
</tr>
<tr>
<td>Region, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>122 (93.1)</td>
<td>126 (95.5)</td>
</tr>
<tr>
<td>Thailand</td>
<td>5 (3.8)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Taiwan, China</td>
<td>4 (3.1)</td>
<td>5 (3.8)</td>
</tr>
<tr>
<td>Liver Metastases, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 (42.7)</td>
<td>57 (43.2)</td>
<td></td>
</tr>
<tr>
<td>ECOG Performance Status, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>51 (38.9)</td>
<td>46 (34.8)</td>
</tr>
<tr>
<td>1</td>
<td>80 (61.1)</td>
<td>86 (65.2)</td>
</tr>
</tbody>
</table>

- All 263 randomized patients (tisle + chemo n=131; placebo + chemo n=132) comprised the ITT population
- 43% of the 263 patients (n=113; tisle + chemo n=56; placebo + chemo n=57) were diagnosed with liver metastases
- Demographics and clinical characteristics of the ITT population were generally balanced across the two treatment arms and were representative of the target patient population
Results

Completion Rates

<table>
<thead>
<tr>
<th></th>
<th>Tisle + chemo (n=131)</th>
<th>Placebo + chemo (n=132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion rate(^a) (%)</td>
<td>100/100 (100.0)</td>
<td>100/100 (100.0)</td>
</tr>
<tr>
<td>Adjusted completion rate(^b) (%)</td>
<td>100/100 (100.0)</td>
<td>100/100 (100.0)</td>
</tr>
<tr>
<td>Cycle 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion rate(^a) (%)</td>
<td>109/131 (83.2)</td>
<td>117/132 (88.6)</td>
</tr>
<tr>
<td>Adjusted completion rate(^b) (%)</td>
<td>109/110 (99.1)</td>
<td>117/117 (100.0)</td>
</tr>
<tr>
<td>Cycle 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion rate(^a) (%)</td>
<td>98/131 (74.8)</td>
<td>88/132 (66.7)</td>
</tr>
<tr>
<td>Adjusted completion rate(^b) (%)</td>
<td>98/98 (100.0)</td>
<td>88/88 (100.0)</td>
</tr>
</tbody>
</table>

\(^a\) Completion rate = number of patients completed questionnaire / total number of patients in relevant treatment arm. \(^b\) Adjusted completion rate = number of patients completed questionnaire / total number of patients in study at relevant visits in relevant treatment arm.

- For the two PRO questionnaires QLQ-C30 and QLQ-H&N35, the completion rate was 100% at baseline.
- At cycle 4, the completion rate was 83% or higher.
- At cycle 8, the completion rate decreased to 74.8% in the tisle + chemo arm and 66.7% in the placebo + chemo arm.
- The adjusted completion rates remained over 99% for both arms at cycle 4 and cycle 8.
Results

EORTC QLQ-C30 Change from Baseline

- No differences in change from baseline to cycles 4 or 8 between the arms were observed for the ITT population or LM subgroup for the QLQ-C30 scales.

Note: Higher scores represent better outcomes on the GHS/QoL scale and physical functioning scale but worse outcome on the fatigue scale.
Results

EORTC QLQ-H&N35 Change from Baseline to Cycle 4

- No differences between the arms emerged at cycle 4

Note. Higher scores indicating worse outcomes
Results

EORTC QLQ-H&N35 Change from Baseline to Cycle 8

- There was a greater reduction from baseline in the tisle + chemo arm vs the placebo + chemo for the **pain score** (ITT: -2.37 [95% CI: -4.21, -0.53], P=0.0117; LM: -3.79 [95% CI: -6.62, -0.97], P=0.0092)

- In the LM subgroup, there was a greater improvement from baseline in the tisle + chemo arm vs the placebo + chemo arm for **senses problems** (LM -5.13 [95% CI: -9.86, -0.40], P=0.0338)

- In the LM subgroup, improvements from baseline in the tisle + chemo arm vs the placebo + chemo were observed for
 - Symptoms index (-2.22 [95% CI: -4.51, 0.08], P=0.0580).
 - Speech problems (-2.85 [95% CI: -5.92, 0.23], P=0.0694)

Yunpeng Yang, MD
Results

Time to deterioration

- There were no significant differences between the two arms in the risk of deterioration for all the key PRO endpoints in either the ITT population or LM subgroup
Discussion

• The findings of current investigation suggest that HRQoL and NPC associated symptoms remained relatively stable in NPC patients treated with tislelizumab + chemo in the ITT population through cycle 8.

• In addition, the subgroup patients clinically diagnosed with LM experienced reductions in overall NPC symptoms as well as reductions in individual symptoms.

• These results, along with improved survival and favorable safety profile, suggest tislelizumab + chemo represents a potential first line treatment option for patients with R/M NPC.
Acknowledgments

The authors would like to thank the patients and their families for their participation in the study, and the global investigators and site personnel for their support during the conduct of this important trial.

This study is sponsored by BeiGene, Ltd. Medical writing support, under the direction of the authors, was provided by Jason Allaire, PhD, and was funded by BeiGene, Ltd.
References

