

Results from RATIONALE 303: A global Phase 3 study of tislelizumab vs docetaxel as second- or third-line therapy for patients with locally advanced or metastatic NSCLC

Caicun Zhou, MD¹

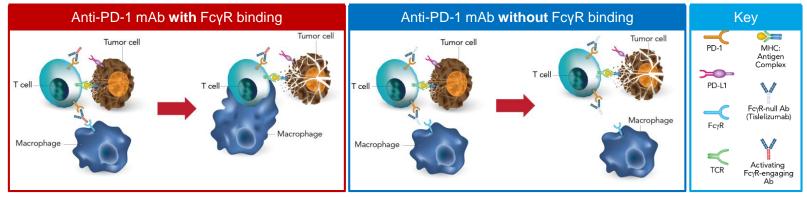
On behalf of Dingzhi Huang,² Xinmin Yu,³ Yunpeng Liu,⁴ Yun Fan,³ Yongqian Shu,⁵ Zhiyong Ma,⁶ Ziping Wang,⁷ Ying Cheng,⁸ Jie Wang,⁹ Sheng Hu,¹⁰ Zhihua Liu,¹¹ Elena Poddubskaya,¹² Umut Disel,¹³ Andrey Akopov,¹⁴ Yiyuan Ma,¹⁵ Yan Wang,¹⁵ Zhenyu Pan,¹⁵ Cunjing Yu,¹⁵ Gareth Rivalland¹⁶

¹Shanghai Pulmonary Hospital, Shanghai, China; ²Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; ³Zhejiang Cancer Hospital, Hangzhou, China; ⁴The First Hospital of China Medical University, Shenyang, China; ⁵Jiangsu Province Hospital, Nanjing, China; ⁶Henan Cancer Hospital, Zhengzhou, China; ⁷Peking University Cancer Hospital & Institute, Beijing, China; ⁸Jilin Cancer Hospital, Changchun, China; ⁹State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; ¹⁰Hubei Cancer Hospital, Wuhan, China; ¹¹Jiangxi Cancer Hospital, Nanchang, China; ¹²VitaMed LLC Moscow, Russia; ¹³Acibadem Adana Hospital, Adana, Turkey; ¹⁴Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia; ¹⁵BeiGene (Beijing) Co., Ltd., Beijing, China; ¹⁶Auckland City Hospital, Auckland, New Zealand

Caicun Zhou

I have the following financial relationships to disclose:

Honoraria as a speaker: Lilly China, Sanofi, BI, Roche, MSD, Qilu, Hengrui, Innovent Biologics, C-Stone,


LUYE Pharma, TopAlliance Biosciences Inc., Amoy Diagnostics

Advisor: Innovent Biologics, Hengrui, Qilu, TopAlliance Biosciences Inc.

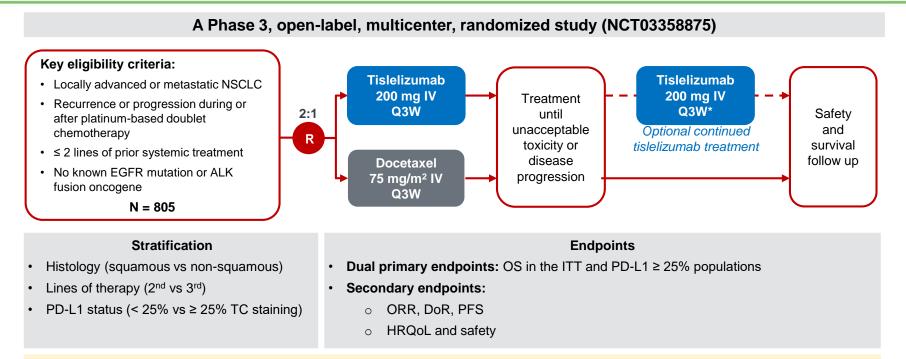
The study was funded by BeiGene, Ltd. Medical writing support for the development of this presentation, under the direction of the authors, was provided by Simon Lancaster, BSc, of Ashfield MedComms, an Ashfield Health company, and funded by BeiGene, Ltd.

RATIONALE 303 Background

- Anti-PD-1/L1 therapies have been shown to improve OS by 2–4 months vs docetaxel in patients with locally advanced or metastatic NSCLC with disease progression after initial platinum-based chemotherapy^{1–4}
- Tislelizumab is an anti-PD-1 antibody engineered to minimize FcyR binding on macrophages, a mechanism of T-cell clearance and potential anti-PD-1 resistance⁵⁻⁷

- In a Phase 1/2 study, 2L+ tislelizumab demonstrated antitumor activity in multiple advanced solid tumors including NSCLC,⁸ and is approved for relapsed/refractory classical Hodgkin lymphoma, second line treatment of locally advanced or metastatic urothelial carcinoma and first line treatment of advanced squamous NSCLC (in China)
- The Phase 3 RATIONALE 303 study was initiated to investigate the efficacy and safety of tislelizumab vs docetaxel in patients with NSCLC who had progressed on a prior platinum-containing regimen

2L, second-line; Ab, antibody; mAb, monoclonal antibody; MHC, major histocompatibility complex; NSCLC, non-small cell lung cancer; OS, overall survival; PD-1, programmed cell death protein-1; PD-L1, programmed cell death ligand-1; TCR, T-cell receptor


1. Borghaei H, et al. N Engl J Med 2015;373:1627–39; 2. Brahmer J, et al. N Engl J Med 2015;373:123–35; 3. Herbst RS, et al. Lancet 2016;387:1540–50; 4. Rittmeyer A, et al. Lancet 2017;389:255–65

5. Zhang T, et al. Cancer İmmunol Immunother 2018:1079–90; 6. Dahan R, et al. Cancer Cell 2015;28:285–95; 7. Qin S, et al. Future Oncol 2019;15:1811–22; 8. Shen L, et al. J Immunother Cancer 2020;8:e000437corr1

RATIONALE 303 Study design

```
AACER American Association
for Cancer Research
```

FINDING CURES TOGETHER*

PD-L1 \geq 25% population included all patients with \geq 25% of TCs with PD-L1 membrane staining (assessed via Ventana SP263 assay)

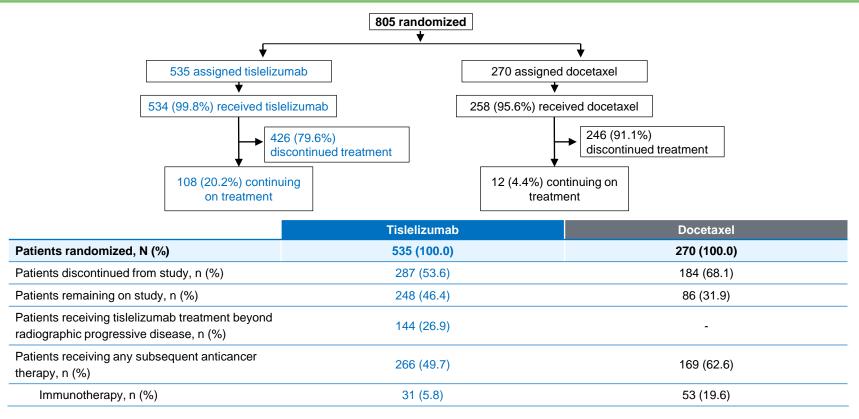
*Patients receiving tislelizumab will be permitted to continue tislelizumab treatment beyond radio-imaging progression if clinical benefit is seen in the absence of symptomatic deterioration and unacceptable toxicity per investigator's discretion ALK, anaplastic lymphoma kinase; DoR, duration of response; EGFR, epidermal growth factor receptor; HRQoL, health-related quality of life; ITT, intent-to-treat; IV, intravenous; ORR, objective response rate; PD-L1, programmed cell death ligand-1; PFS, progression-free survival; Q3W, every 3 weeks; R, randomized; TC, tumor cell

RATIONALE 303 Statistical considerations

AGR American Association for Cancer Research*

- Primary endpoints: OS in the ITT population and in the PD-L1 ≥ 25% population
- Planned enrolment: ~800 patients
- Overall alpha for the study: one-sided α 0.025
 - 560 death events will provide approximately 87% power to detect an OS HR (tislelizumab/docetaxel) of 0.75 with a one-sided alpha of 0.02 in the ITT
 - 207 death events in the PD-L1 ≥ 25% population will provide approximately 86% power to detect an OS HR of 0.60 with a onesided alpha of 0.007
- A sequential testing with alpha splitting approach will be implemented

- Interim analysis (reviewed by independent data monitoring committee)
 - For the purposes of the interim analysis, formal OS superiority testing was conducted only in the ITT
 - Pre-specified to be conducted after ~426 death events occurred (76% of planned events) using Hwang-Shih-DeCani spending function with γ parameter of -2


- Interim analysis at data cut-off date: 10th August 2020
 - Observed number of death events: 441 (54.8%)
 - One-sided alpha level: α 0.0120 for ITT (based on the observed number of death events)

ITT, intent-to-treat; PD-L1, programmed cell death ligand-1; OS, overall survival

RATIONALE 303 Patient disposition

FINDING CURES TOGETHER*

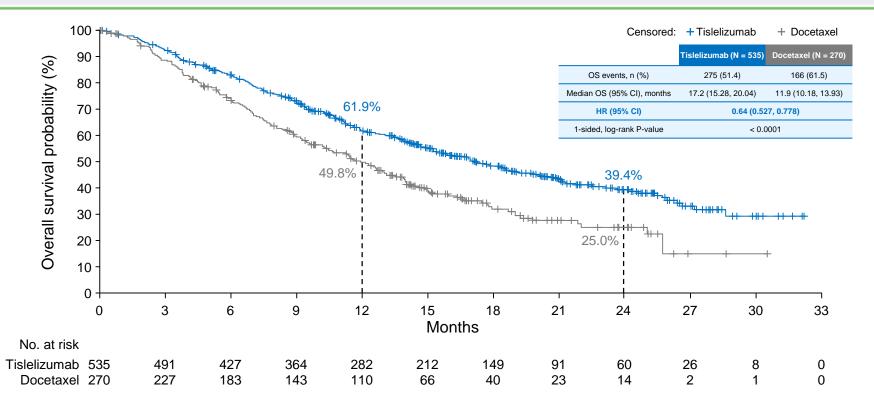
Data cut-off: August 10th 2020

RATIONALE 303 Baseline demographics and characteristics

FINDING CURES TOGETHER*

	Tislelizumab (N = 535)	Docetaxel (N = 270)		
Median age, years (range)	61.0 (28–88)	61.0 (32–81)		
Patients aged < 65 years, n (%)	364 (68.0)	180 (66.7)		
Sex, n (%)				
Male	416 (77.8)	206 (76.3)		
Race, n (%)				
Asian	424 (79.3)	219 (81.1)		
White	94 (17.6)	44 (16.3)		
ECOG performance status, n (%)				
0	115 (21.5)	50 (18.5)		
1	420 (78.5)	220 (81.5)		
Smoking status, n (%)				
Never	162 (30.3)	82 (30.4)		
Current/former	373 (69.7)	188 (69.6)		
PD-L1 expression, n (%)				
≥ 25%	227 (42.4)	116 (43.0)		
< 25%	308 (57.6)	154 (57.0)		
Histology, n (%)				
Squamous	248 (46.4)	122 (45.2)		
Non-squamous	287 (53.6)	148 (54.8)		
Non-squamous	287 (53.6)	148 (54.8)		

	Tislelizumab (N = 535)	Docetaxel (N = 270)
EGFR mutation, n (%)		
Wild type	339 (63.4)	183 (67.8)
Unknown	195 (36.4)	87 (32.2)
ALK rearrangement, n (%)		
Wild type	241 (45.0)	130 (48.1)
Unknown	294 (55.0)	140 (51.9)
Current line of therapy, n (%)		
Second	453 (84.7)	229 (84.8)
Third	82 (15.3)	41 (15.2)
Disease stage, n (%)		
Locally advanced	83 (15.5)	34 (12.6)
Metastatic	452 (84.5)	236 (87.4)
Brain metastasis, n (%)		
Yes	39 (7.3)	18 (6.7)
Liver metastasis, n (%)		
Yes	73 (13.6)	33 (12.2)

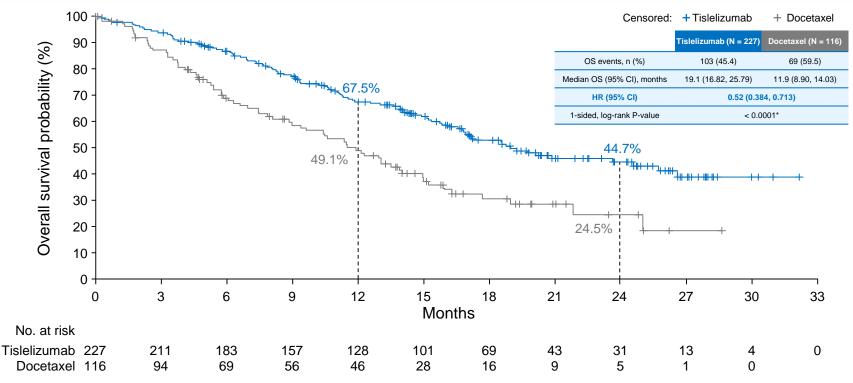

Data cut-off: August 10th 2020

ALK, anaplastic lymphoma kinase; ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; PD-L1, programmed cell death ligand-1

Primary endpoint – overall survival (ITT)

AACR American Association for Cancer Research*

FINDING CURES TOGETHER*

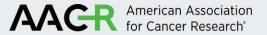


Data cut-off: August 10th 2020. One-sided P-value was estimated from stratified log-rank test. Hazard ratio was estimated from stratified Cox model with docetaxel group as reference group. Medians were estimated by Kaplan-Meier method with 95% Cls estimated using the method of Brookmeyer and Crowley. Cl, confidence interval; HR, hazard ratio

Primary endpoint – overall survival (PD-L1 ≥25%)[†]

AACER American Association for Cancer Research

FINDING CURES TOGETHER*



[†]PD-L1 ≥ 25% population included all patients with ≥ 25% of TCs with PD-L1 membrane staining (assessed via Ventana SP263 assay)

*Descriptive P-value

Data cut-off: August 10th 2020. One-sided *P*-value was estimated from stratified log-rank test. Hazard ratio was estimated from stratified Cox model with docetaxel group as reference group. Medians were estimated by Kaplan-Meier method with 95% CIs estimated using the method of Brookmeyer and Crowley

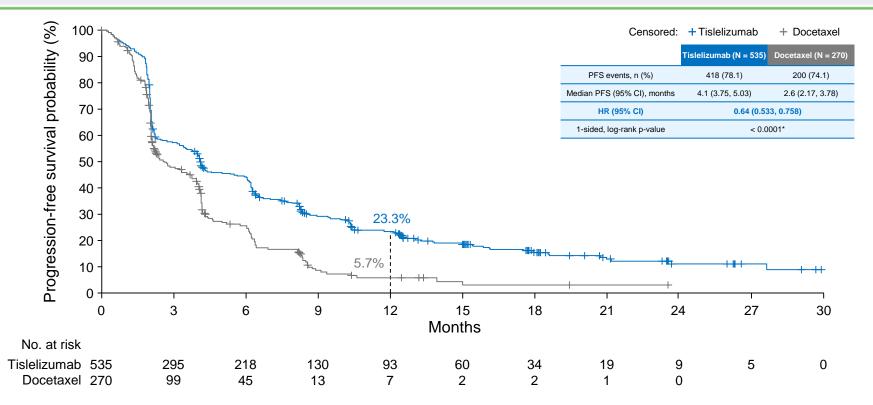
RATIONALE 303 Overall survival (ITT) – subgroup analysis

FINDING CURES TOGETHER*

OS subgroup analysis (ITT)

Subgroup	No. of Events / No. of Patients			HR for death (95% CI)
Overall	441/805			0.64 (0.529-0.779)
Age				
< 65 years	300/544		1	0.61 (0.479-0.767)
≥ 65 years	141/261			0.71 (0.500-0.994)
Sex, n (%)			i	
Male	347/622			0.56 (0.450-0.695)
Female	94/183			1.07 (0.693-1.666)
Race, n (%)		_		
Asian	379/643			0.62 (0.505-0.767)
White	49/138			0.61 (0.341-1.080)
ECOG performance status score				
0	75/165		1	0.93 (0.557-1.552)
1	366/640		1	0.60 (0.487-0.743)
Smoking status		— e —		
Current/former	312/561			0.59 (0.469-0.743)
Never	129/244	-		0.80 (0.557–1.153)
PD-L1 expression in TC			-!	
< 25% TC	269/462			0.74 (0.577–0.950)
≥ 25% TC	172/343			0.52 (0.383-0.708)
< 1% TC	178/319	- -	1	0.74 (0.541-1.000)
≥ 1% TC	263/486			0.58 (0.455-0.751)
< 10% TC	235/410			0.69 (0.532-0.903)
≥ 10% TC	206/395			0.59 (0.441-0.779)
< 50% TC	326/561	<u>-</u>		0.68 (0.543-0.854)
≥ 50% TC	115/244	0.0 0.5		0.55 (0.377–0.798)

Subgroup	No. of Events / No. of Patients					HR for death (95% CI)
Histology				i		
Non-squamous	226/435			— i		0.71 (0.539–0.928)
Squamous	215/370		=	.		0.57 (0.430-0.749)
EGFR mutation at baseline						
Wild type	273/522			— i		0.67 (0.528-0.862)
Unknown	168/282			- !		0.59 (0.427-0.804)
ALK rearrangement at baseline			_			
Wild type	200/371					0.69 (0.514–0.916)
Unknown	241/434		-	i		0.61 (0.467-0.788)
Line of therapy						
Second	370/682				_	0.62 (0.498-0.759)
Third	71/123					0.80 (0.487-1.318)
Disease Stage						
Locally advanced	55/117			- !		0.56 (0.313-0.998)
Metastatic	386/688			l l		0.66 (0.537-0.810)
Brain metastases at baseline						
Yes	35/57			-		0.96 (0.470-1.960)
No	406/748			i		0.62 (0.508-0.760)
Liver metastases at baseline				- ;		
Yes	66/106			_		0.46 (0.280-0.771)
No	375/699	0.0	0.5	1.0	1.5	2.0 0.66 (0.538-0.820)
		-	- Tislelizum	nab	Docetaxel -	→

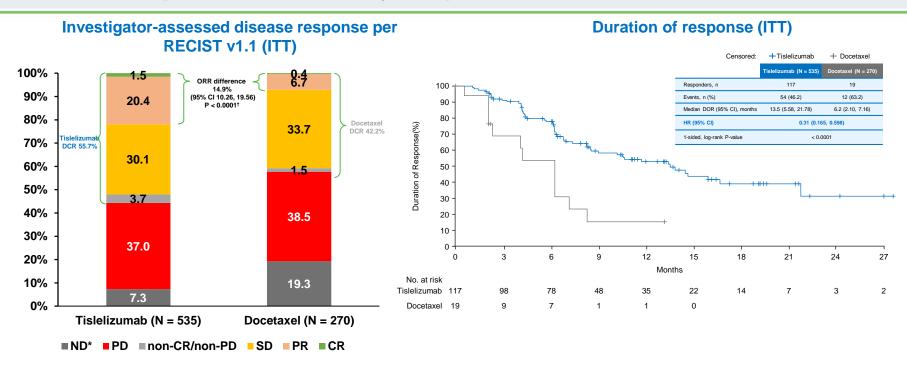

• A consistent OS benefit was observed for tislelizumab vs docetaxel for almost all studied subgroups

Data cut-off: August 10th 2020. HR and 95% CI were estimated from unstratified Cox model with docetaxel group as reference group

Secondary endpoint – progression-free survival (ITT)

AACER American Association for Cancer Research*

FINDING CURES TOGETHER*


*Descriptive P-value

Data cut-off: August 10th 2020. One-sided P-value was estimated from stratified log-rank test. HR was estimated from stratified Cox model with docetaxel group as reference group. Medians were estimated by Kaplan-Meier method with 95% CIs estimated using the method of Brookmeyer and Crowley

Disease response – secondary endpoint

FINDING CURES TOGETHER

AMERICAN AMERICAN ASSOCIATION for Cancer Research*

*Included patients who had post-baseline tumor assessment, none of which were evaluable; or patients who had no post-baseline tumor assessments due to death, withdrawal of consent, lost to follow-up or any other reasons *Descriptive P-value

Data cut-off: August 10th 2020. Objective response rate differences and odds ratios between arms were calculated using the Cochran-Mantel-Haenszel Chi-square test with actual stratification factors as strata

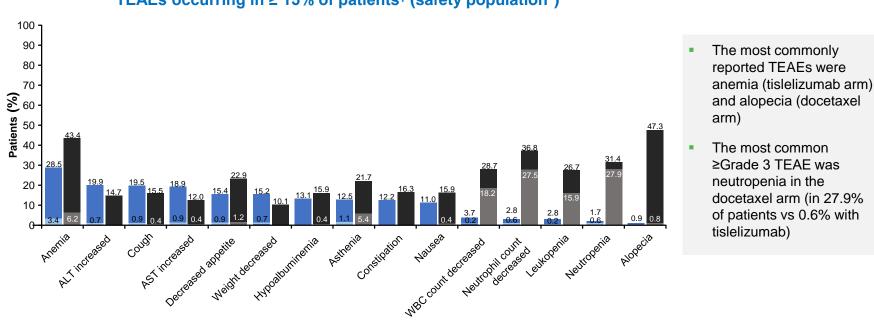
DCR, disease control rate; ND, could not be determined; RECIST, response evaluation criteria in solid tumors

*Descriptive P-value

Data cut-off: August 10th 2020. One-sided P-value was estimated from unstratified log-rank test. Hazard ratio was estimated from unstratified Cox model with docetaxel group as reference group. Medians were estimated by Kaplan-Meier method with 95% CIs estimated using the method of Brookmeyer and Crowley

AACR American Association for Cancer Research*

Overall safety profile (safety analysis set*)


	Tislelizumab (N = 534)	Docetaxel (N = 258)
Mean duration of exposure, weeks (SD)	32.6 (29.70)	14.5 (13.84)
Mean number of treatment cycles (SD)	10.5 (9.37)	4.7 (4.49)
Any TEAE, n (%)	509 (95.3)	254 (98.4)
Treatment-related	390 (73.0)	242 (93.8)
≥ Grade 3 TEAE	206 (38.6)	193 (74.8)
Treatment-related	77 (14.4)	171 (66.3)
Serious TEAE	174 (32.6)	83 (32.2)
≥ Grade 3	138 (25.8)	76 (29.5)
Treatment-related	67 (12.5)	59 (22.9)
TEAE leading to death	32 (6.0)	11 (4.3)
Treatment-related	8 (1.5)	4 (1.6)
TEAE leading to permanent treatment discontinuation	56 (10.5)	32 (12.4)
Treatment-related	32 (6.0)	25 (9.7)

Compared with docetaxel, tislelizumab was associated with a notably lower incidence of ≥ Grade 3 AEs

*Safety analysis set included all patients receiving any dose of study drug Data cut-off: August 10th 2020. AE grades were evaluated based on NCI-CTCAE (version 4.03) TEAE, treatment-emergent adverse event

RATIONALE 303 Most common TEAEs

TEAEs occurring in \geq 15% of patients[†] (safety population^{*})

Tislelizumab (N = 534) All grades

■ Tislelizumab (N = 534) ≥ Grade 3
■ Docetaxel (N = 258) All grades
■ Docetaxel (N = 258) ≥ Grade 3

*Safety population included all patients receiving any dose of study drug

[†]In either treatment arm. Data cut-off: August 10th 2020. AE grades were evaluated based on NCI-CTCAE (version 4.03)

AST, aspartate aminotransferase; TEAE, treatment-emergent adverse event; WBC, white blood cell

RATIONALE 303 Immune-mediated TEAEs

FINDING CURES TOGETHER*

CPK, creatine phosphokinase

Tislelizumab monotherapy in second- and third-line NSCLC

- Significantly prolonged OS in the ITT population
- Significantly prolonged OS in the PD-L1 ≥ 25% population*
- Tislelizumab showed consistent benefit over docetaxel across all PD-L1 expression subgroups

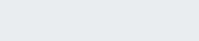
Tislelizumab prolonged PFS, improved ORR and prolonged DoR versus docetaxel

Tislelizumab had a tolerable and manageable safety profile consistent with other PD-1/L1 inhibitors, with a lower incidence of \geq Grade 3 AEs than docetaxel

*PD-L1 ≥ 25% population included all patients with ≥ 25% of TCs with PD-L1 membrane staining (assessed via Ventana SP263 assay) Data cut-off: August 10th 2020

AACR ANNUAL MEETING 2021: APRIL 10-15, 2021 AND MAY 17-21, 2021

Acknowledgements


RATIONALE 303

Global study

PATIENTS AND THEIR FAMILIES

Investigators, Rafal Dziadziuszko MD, Gilberto de Castro Jr MD, and site personnel from 94 sites in 10 countries

- BeiGene Ltd. for sponsoring the study.
- All employees of BeiGene who contributed to the study

