Final Analysis of RATIONALE-301: Randomized, Phase 3 Study of Tislelizumab versus Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma

<u>Eric Assenat</u>¹; Shukui Qin²; Masatoshi Kudo³; Tim Meyer⁴; Richard S. Finn⁵; Arndt Vogel⁶; Yuxian Bai⁷; Yabing Guo⁸; Zhiqiang Meng⁹; Tao Zhang¹⁰; Taroh Satoh¹¹; Atsushi Hiraoka¹²; Donatella Marino¹³; Lucjan Wyrwicz¹⁴; Mariona Calvo Campos¹⁵; Kuo Hsing-Tao¹⁶; Frederic Boisserie¹⁷; Songzi Li¹⁸; Yaxi Chen¹⁹; Andrew X. Zhu²⁰;

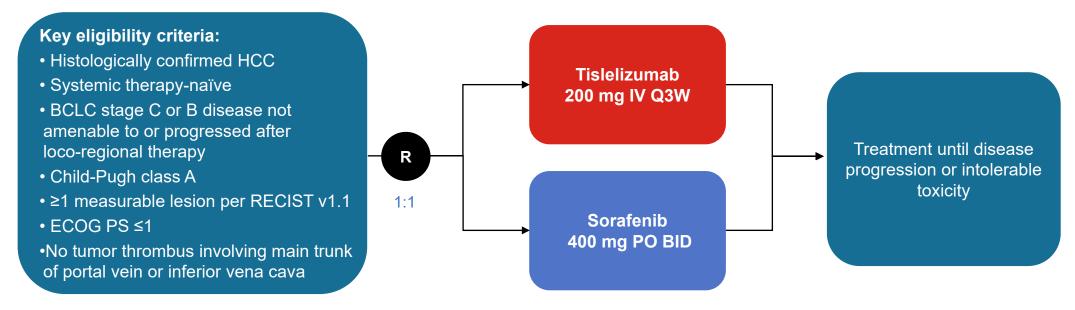
¹Department of Medical Oncology, Montpellier University Hospital, Montpellier, France; ²Cancer Center, Qinhuai Medical District, General Hospital of Eastern Theater of PLA, Nanjing, China; ³Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan; ⁴Department of Oncology, Royal Free Hospital NHS Trust and UCL Cancer Institute, London, United Kingdom; ⁵Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, United States; ⁶Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; ⁷Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China; ⁸Center for Infectious Diseases and Liver Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; ⁹Department of Integrative Oncology, Fudan University Shanghai Cancer Hospital, Shanghai, China; ¹⁰Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ¹¹Department of Frontier Science for Cancer and Chemotherapy, Osaka University, Osaka, Japan; ¹²Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan; ¹³Division of Medical Oncology, Ordine Mauriziano Hospital, Turin, Italy; ¹⁴Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, Warsaw, Poland; ¹⁵Department of Medical Oncology, Institut Català d'Oncologia, Barcelona, Spain; ¹⁶Department of Gastroenterology, Chi Mei Medical Center, Tainan, Taiwan; ¹⁷Clinical Development – Solid Tumor, BeiGene, Ltd., Ridgefield Park, NJ, United States; ¹⁸Statistics and Data Science, BeiGene, Ltd., Ridgefield Park, NJ, United States; ¹⁹Clinical Development – Solid Tumor, BeiGene (Beijing) Co., Ltd., Beijing, China; ²⁰Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, United States; Jiahui International Cancer Center, Jiahui Health, Shanghai, China

Declaration of Interests

 Eric Assenat has served on the advisory board for AstraZeneca, Ipsen, Roche, and Servier.

RATIONALE-301: Background

- Liver cancer is the sixth most common cancer globally and the third leading cause of cancer death¹
- HCC is the predominant subtype of liver cancer, accounting for approximately 80% of cases and occurring most commonly in Asia^{2,3}
- Currently atezolizumab plus bevacizumab is the standard treatment for 1L HCC ^{3,4}
- Tislelizumab, a monoclonal antibody with high binding affinity for PD-1, was specifically engineered to minimize Fcγ receptor binding on macrophages^{5,6}
- In the phase 2 RATIONALE-208 study (NCT03419897), tislelizumab monotherapy demonstrated durable responses and was generally well tolerated in patients with previously treated advanced HCC⁷
- Here, we report the final analysis results of RATIONALE-301, which compared the efficacy and safety of tislelizumab with sorafenib as a single-agent, 1L treatment in patients with unresectable HCC



^{1.} Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf. Accessed August 2022.

^{2.} Golabi P, et al. *Medicine*. 2017;96(9):e5904. 3. Vogel A, et al. *Ann Oncol*. 2021;32(6):801-805. 4. Gordan JD, et al. *J Clin Oncol*. 2020;38(36):4317-4345. 5. Zhang T, et al. *Cancer Immunot Immunother*. 2018;67(7):1079-1090. 6. Hong Y, et al. *FEBS Open Bio*. 2021;11(3):782-792. 7. Ducreux M, et al. *Ann Oncol*. 2021; 32 (Abs O-1) [presented at WCGI 2021].

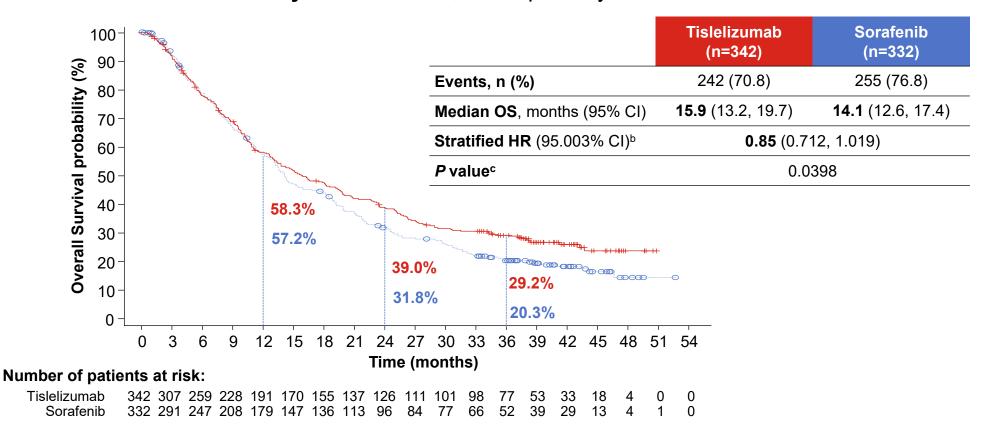
RATIONALE-301: Study Design

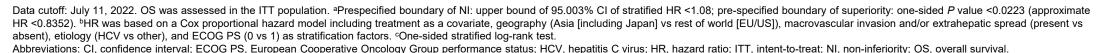
Randomized, open-label, multicenter, multiregional phase 3 study

- Primary endpoint: OS in the ITT population
- Key secondary endpoints: ORR, PFS, and DoR by BIRC per RECIST v1.1, and safety
- Stratification factors: Macrovascular invasion (present vs absent), extrahepatic spread (present vs absent), ECOG PS (0 vs 1), etiology (HCV vs other^a), geography (Asia [excluding Japan], vs Japan vs rest of world)

RATIONALE-301: Statistical Design

- The statistical design included an interim analysis of OS when 403 events were observed
- The final analysis of OS took place when 497 OS events were observed
- The upper (efficacy) boundary is based on the O'Brien-Fleming boundary, approximated by the Hwang-Shih-DeCani spending function
- Endpoints were tested with regards to: (1) noninferiority of OS, (2) superiority of OS, (3) ORR, and
 (4) PFS
- HR was based on a Cox proportional hazard model including treatment as a covariate, and geography (Asia [including Japan] vs rest of world [EU/US]), macrovascular invasion and/or extrahepatic spread (present vs absent), etiology (HCV vs other^a), and ECOG PS (0 vs 1) as stratification factors
- Non-inferiority of OS between treatment arms was claimed if the upper limit of the hazard ratio 95.003% confidence interval was <1.08
- Superiority of OS between treatment arms was claimed if the one-sided P-value was <0.0223


RATIONALE-301: Patient Baseline Characteristics

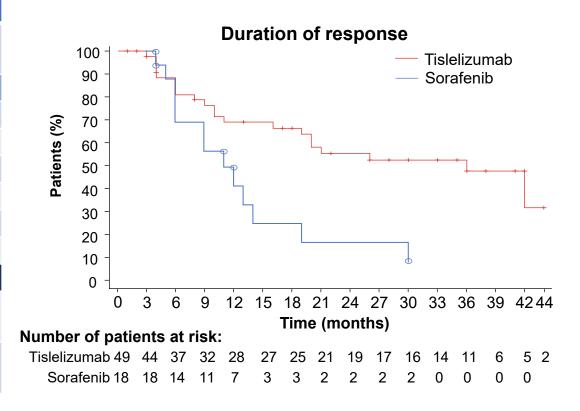

		Tislelizumab (n=342)	Sorafenib (n=332)	
Median age, years (range)		62.0 (25.0-86.0)	60.0 (23.0-86.0)	
Male sex, n (%)		289 (84.5)	281 (84.6)	
Geographic region, n (%)	Asia (excluding Japan)	215 (62.9)	210 (63.3)	
	Japan	38 (11.1)	39 (11.7)	
	Rest of world ^a	89 (26.0)	83 (25.0)	
ECOG PS, n (%)	0	183 (53.5)	181 (54.5)	
	1	159 (46.5)	151 (45.5)	
DOLO eta sin er et etudu entre en (0/)	В	70 (20.5)	80 (24.1)	
BCLC staging at study entry, n (%)	С	272 (79.5)	252 (75.9)	
HCC etiology, n (%)	HBV	203 (59.4)	206 (62.0)	
	HCV	46 (13.5)	39 (11.7)	
	HBV and HCV co-infection	11 (3.2)	7 (2.1)	
	Non-viral	82 (24.0)	80 (24.1)	
Extrahepatic spread, n (%)		219 (64.0)	198 (59.6)	
Macrovascular invasion, n (%)		51 (14.9)	49 (14.8)	
Local regional therapy, n (%)		265 (77.5)	250 (75.3)	
AFP ≥400 ng/ml, n (%)		135 (39.5)	116 (34.9)	
Child Bugh score n (%)		263 (76.9)	248 (74.7)	
Child-Pugh score, n (%)		77 (22.5)	84 (25.3)	

RATIONALE-301: Overall Survival

Tislelizumab demonstrated OS noninferiority^a vs sorafenib; OS superiority vs sorafenib was not met

RATIONALE-301: Overall Survival by Subgroups^a

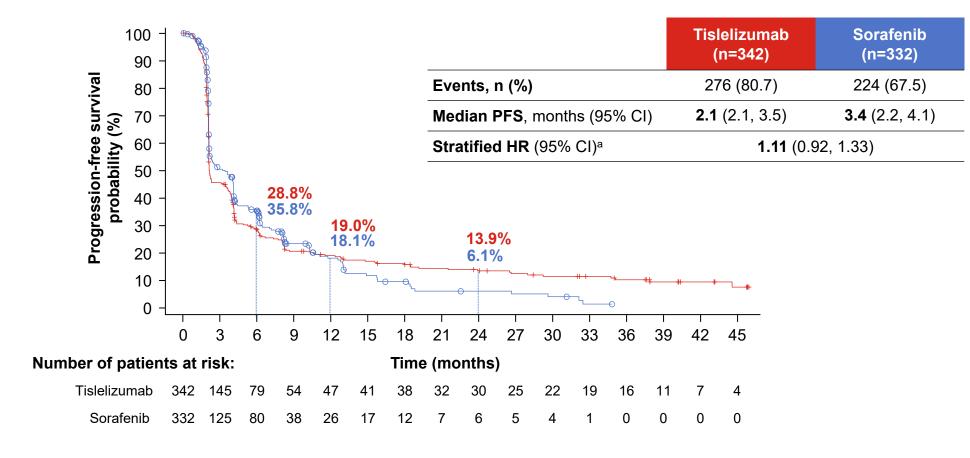
The OS results observed in the overall population were consistently observed across all subgroups

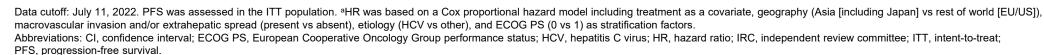

Subgroup	Event/Total: Tislelizumab	Event/Total: Sorafenib	HR for death (95% CI)	HR (95% CI)	Subgroup	Event/Total: Tislelizumab	Event/Total: Sorafenib	HR for death (95% CI)	HR (95% CI)
Overall	242/342	255/332	-=-	0.84 (0.70, 1.00)	Macrovascular invasior Present Absent	42/51 200/291	44/49 211/283	-	0.83 (0.54, 1.27) 0.84 (0.69, 1.02)
Age Age <65 years Age ≥65 years	154/208 88/134	163/211 92/121	-	0.89 (0.71, 1.11) 0.76 (0.57, 1.02)	Extrahepatic spread Present Absent	160/219 82/123	154/198 101/134	-	0.90 (0.72, 1.12) 0.73 (0.55, 0.98)
Gender Male Female Geographical region	208/289 34/53	216/281 39/51	-	0.88 (0.73, 1.07) 0.62 (0.39, 0.99)	Hepatitis virus infection HBV HCV Non-viral	158/214 26/46 58/82	164/213 30/39 61/80	-	0.91 (0.73, 1.14) 0.64 (0.38, 1.08) 0.78 (0.55, 1.12)
Asia (including Japan EU/US Asia (excluding Japan	57/89	193/249 62/83 166/210	-	0.88 (0.72, 1.07) 0.73 (0.51, 1.04) 0.88 (0.71, 1.10)	BCLC stage	44/70 198/272	56/80 199/252	-	0.75 (0.50, 1.11) 0.85 (0.70, 1.04)
Japan EU/US	22/38 57/89	27/39 62/83		0.78 (0.44, 1.38) 0.73 (0.51, 1.04)	Previous local regional Yes No		184/250 71/82	-	0.86 (0.70, 1.05) 0.82 (0.58, 1.16)
Asian White Other	187/255 45/71 10/16	194/250 54/73 7/9	**	0.88 (0.72, 1.08) 0.73 (0.49, 1.09) 0.60 (0.23, 1.57)	ECOG PS	124/183 118/159	131/181 124/151	_	0.87 (0.68, 1.12) 0.79 (0.61, 1.01)
MVI and/or EHS Present Absent	174/240 68/102	171/217 84/115	-	0.86 (0.70, 1.06) 0.78 (0.56, 1.07)	Alpha-fetoprotein <400 ng/ml ≥400 ng/ml	139/206 102/135	153/213 100/116	-	0.81 (0.64, 1.02) 0.86 (0.65, 1.13)
		Favors tisleli	zumab 1 I	avors sorafenib			Favors tisleliz	umab 1 F	Tavors sorafenib

RATIONALE-301: Objective Response Rate by IRC

Tislelizumab was associated with a higher ORR and more durable responses vs sorafenib

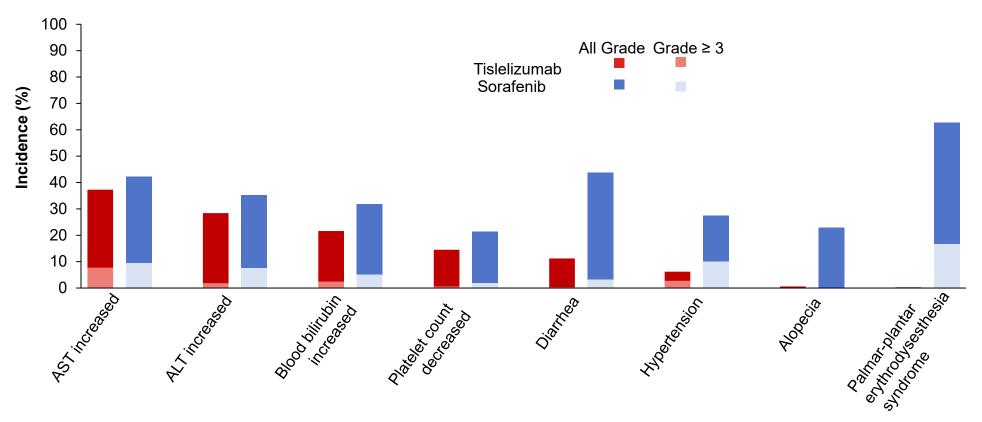
	Tislelizumab (n=342)	Sorafenib (n=332)			
ORR, n (%) [95% CI]ª	49 (14.3) [10.8, 18.5]	18 (5.4) [3.2, 8.4]			
Best overall response, n (%) ^a					
CR	10 (2.9)	1 (0.3)			
PR	39 (11.4)	17 (5.1)			
SD	94 (27.5)	139 (41.9)			
PD	169 (49.4)	121 (36.4)			
Undetermined ^b	22 (6.4)	44 (13.3)			
Non-CR/non-PD°	8 (2.3)	10 (3.0)			
Responders	Tislelizumab (n=49)	Sorafenib (n=18)			
Median DoR, months (95% CI)	36.1 (16.8, NE)	11.0 (6.2, 14.7)			
Patients with ongoing response, n (%)d	20/28 (71.4)	2/5 (40.0)			




Data cutoff: July 11, 2022. ORR was assessed in the ITT population. ^aConfirmed responses; ^bPatients with no postbaseline tumor assessment (not assessable) or a nonevaluable tumor assessment. ^cPatients were assessed as non-CR/non-PD if the IRC was not able to identify the target lesions at screening. Patients with no target lesions were evaluated based on the assessment of nontarget lesions or the presence of new lesions. ^dPatients who had PD or died were excluded from this analysis.

Abbreviations: CI, confidence interval; CR, complete response; DoR, duration of response; IRC, independent review committee; ITT, intent-to-treat; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

RATIONALE-301: Progression-Free Survival by IRC


RATIONALE-301: Safety Summary

 TEAEs and treatment-related TEAEs at grade ≥3 were less frequent with tislelizumab and treatment with tislelizumab led to fewer discontinuations/dose modifications vs sorafenib

Patients	Tislelizumab (n=338)	Sorafenib (n=324)
Safety, n (%)		
Any TEAE	325 (96.2)	324 (100.0)
Treatment-related	259 (76.6)	311 (96.0)
TEAE at ≥grade 3	163 (48.2)	212 (65.4)
Treatment-related	75 (22.2)	173 (53.4)
Serious TEAE	101 (29.9)	91 (28.1)
Treatment-related	40 (11.8)	33 (10.2)
TEAE leading to discontinuation	37 (10.9)	60 (18.5)
Treatment-related	21 (6.2)	33 (10.2)
TEAE leading to drug modification ^a	105 (31.1)	210 (64.8)
Treatment-related	68 (20.1)	187 (57.7)
TEAE leading to death	15 (4.4)	17 (5.2)
Treatment-related	3 (0.9)	2 (0.6)
Immune-mediated AEs	62 (18.3)	10 (3.1)
Immune-mediated AEs treated with systemic corticosteroids	47 (13.9)	10 (3.1)
Immune-mediated AEs in ≥5% of patients		
Hepatitis	18 (5.3)	1 (0.3)
Hypothyroidism	18 (5.3)	0 (0)
Treatment		
Median duration of treatment, months	4.1	2.7

RATIONALE-301: TEAEs Reported in ≥20% of Patients

The incidence of TEAEs at any grade and at Grade ≥3 were lower with tislelizumab vs sorafenib;
 Grade ≥3 hypertension and palmar-plantar erythrodysesthesia syndrome were more common with sorafenib

Conclusions

RATIONALE-301 met its primary endpoint: tislelizumab monotherapy demonstrated clinically meaningful OS benefit that was noninferior to sorafenib (mOS: 15.9 months vs 14.1 months, respectively; stratified HR 0.85 [95% CI 0.712, 1.019]; P=.0398), higher ORR (14.3% vs 5.4%), more durable responses (mDoR: 36.1 vs 11.0 months), and shorter mPFS (2.1 vs 3.4 months) vs sorafenib as 1L treatment in patients with unresectable HCC

- Fewer patients experienced treatment-related TEAEs, Grade ≥3 TEAEs, treatment-related Grade
 ≥3 TEAEs, and TEAEs leading to discontinuation or dose modification with tislelizumab vs
 sorafenib; the safety profile of tislelizumab was consistent with that observed in other tumor types
- Single-agent tislelizumab demonstrated a clinically meaningful antitumor benefit vs sorafenib with a favorable and manageable safety profile as a 1L treatment option for patients with unresectable HCC

Acknowledgments

The authors would like to thank the patients and their families for their participation in the study, and the global investigators and site personnel for their support during the conduct of this important trial.

This study was sponsored by BeiGene.

Editorial support was provided by Medical Expressions and funded by BeiGene.

