Efficacy and Safety of Zanubrutinib in Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) with del(17p): Follow-up Results from Arm C of the SEQUOIA (BGB-3111-304) Trial

Jennifer R. Brown, MD, PhD¹; Tadeusz Robak, MD, PhD²; Paolo Ghia, MD, PhD³; Brad S. Kahl, MD⁴; Patricia Walker, MBBS, BMedSci, FRACP, FRCPA⁵; Wojciech Janowski, MBChB, FRCPA, FRACP⁶; Henry Chan, MBChB, FRACP, FRCPA⁷; Mazyar Shadman, MD, MPHø³; Peter S. Ganly, BMBCh, PhD¹⁰,¹¹; Luca Laurenti, MD¹²; Stephen Opat, MBBS (Hons), FRACP, FRCPA¹³,¹⁴; Monica Tani, MD¹⁵; Hanna Ciepluch, MD¹⁶; Emma Verner, MBBS, BMedSci, FRCPA, FRACP¹¹; Martin Šimkovič, MD, PhD¹8,¹9; Anders Österborg, MD, PhD²⁰, Marek Trněný, MD²²; Alessandra Tedeschi, MD²³; Piers Blombery, MBBS, FRCPA, FRACP²⁴; Jason Paik, MD, PhD²⁵; Fangfang Yin, PhD²⁵; Shibao Feng, PhD²⁵; Vanitha Ramakrishnan, PhD²⁵; Jane Huang, MD²⁵; Peter Hillmen, MBChB, PhD, FRCP, FRCPath²⁶; and Constantine S. Tam, MBBS, MD²⁴,²7,²8,²9

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Medical University of Lodz, Lodz, Poland; ³Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy; ⁴Washington University School of Medicine, St Louis, MO, USA; ⁵Peninsula Private Hospital, Frankston, Victoria, Australia; ⁶Calvary Mater Newcastle, Waratah, New South Wales, Australia; ¬North Shore Hospital, Auckland, New Zealand; ⁶Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁶Department of Medicine, University of Washington, Seattle, WA, USA; ⁶Department of Haematology, Christchurch Hospital, Christchurch, New Zealand; ¹¹Pendazione Policlinico Universitario A Gemelli UCSC, Rome, Italy; ¹³Monash Health, Clayton, Victoria, Australia; ¹⁴Monash University, Clayton, Victoria, Australia; ¹⁵Hematology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy; ¹⁶Copernicus Wojewódzkie Centrum Onkologi, Gdánsk, Poland; ¹¹Concord Repatriation General Hospital, Concord, New South Wales, Australia; ¹⁴4th Department of Internal Medicine - Hematology, University Hospital, Hradec Kralove, Czech Republic; ¹⁶Faculty of Medicine, Charles University, Prague, Czech Republic; ²⁰Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; ²¹Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; ²²First Department of Medicine, First Faculty of Medicine, Charles University, General Hospital, Prague, Czech Republic; ²³ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ²⁴Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ²⁵BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene USA, Inc., San Mateo, CA, USA; ²⁶Saint James's University Hospital, Leeds, United Kingdom; ²⁷University of Melbourne, Parkville, Victoria, Australia; ²⁶St Vincent's Hospital, Fitzroy, Victoria, Australia; and ²⁶Rozal Melbourne Hospital, Parkville, Victoria, Australia

Introduction

- Patients with CLL/SLL whose tumor exhibits the deletion of chromosome 17p13.1 [del(17p)]
 have an unfavorable prognosis and respond poorly to standard chemoimmunotherapy, even
 in the frontline setting^{1,2}
- BTK and Bcl-2 inhibitors have been shown to improve outcomes for patients with del(17p)^{3,4}
- Zanubrutinib (BGB-3111) is a second generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target inhibition of TEC- and EGFR-family kinases^{5,6}
 - In the ASPEN study of patients with Waldenström macroglobulinemia, zanubrutinib was associated with important safety advantages compared with ibrutinib, including reduced rates of atrial fibrillation (2% vs 15%)⁷
- Initial results from Arm C of the SEQUOIA (BGB-3111-304) trial of zanubrutinib in a large cohort of TN CLL/SLL patients with del(17p) were previously presented with a median follow-up of 10 months⁸; updated results with a median follow-up of 22 months are presented here

SEQUOIA (BGB-3111-304) Study Design

- Endpoints for Arm C: ORR (IRC and investigator assessments), PFS, DOR, safety
- Response assessment: per modified iwCLL criteria for CLL^{2,3} and Lugano criteria for SLL⁴ (IRC and investigator assessments)

bid, twice daily; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; DOR, duration of response; FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence in situ hybridization; IRC, independent review committee; iwCLL, international workshop on CLL; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; R, randomized; TN, treatment-naïve.

^a TP53 mutational status was not centrally assessed prior to enrollment.

^{1.} Tam CS, et al. ASH. 2020; Abstract: 1318. 2. Hallek M, et al. Blood. 2008;111:5446-5456. 3. Cheson BD, et al. J Clin Oncol. 2012;30:2820-2822. 4. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3067.

SEQUOIA Arm C: Patient Disposition

Data Cutoff: August 10, 2020

Median follow-up (range): 21.9 months (5.0 - 30.2)

Adverse Events of Interest

^a All infection terms pooled. ^b Pooled term of bleeding not included in bruising, petechiae, or major bleeding. ^c Purpura, contusion, ecchymosis or increased tendency to bruise. ^d Neutropenia, neutrophil count decreased, or febrile neutropenia. ^e Hypertension, blood pressure increased, or hypertensive crisis. ^f Grade ≥ 3 hemorrhage, serious

^a Neutropenia, neutrophil count decreased, or febrile neutropenia. ^e Hypertension, blood pressure increased, or hypertensive crisis. ⁱ Grade ≥ 3 hemorrhage, serious hemorrhage, or central nervous system hemorrhage of any grade were pooled. ^g Thrombocytopenia or platelet count decreased. ^h Pneumonia leading to sepsis and death (related), pseudomonal sepsis (related), melanoma (unrelated), renal failure in the context of disease progression (unrelated), and unknown at the data cutoff. ⁱ Pneumonia leading to sepsis and death (related), and renal failure in the context of disease progression (unrelated), both of which also led to treatment discontinuation.

Best Overall Response Investigator Assessment

- Duration of Response
 - -DOR ≥12 mo [95% CI]a: 93.1% [86 97]
 - -DOR ≥18 mo [95% CI]a: 87.7% [78 93]
- Compared to 2019 ASH presentation^b
 - CR/CRi rate increased from 1.9% to 6.4%
 - -PR-L rate decreased from 11.9% to 0.9%
- Features of patients achieving CR/CRi
 - -5 mutated IGHV, 2 unmutated IGHV
 - 4 noncomplex, 1 complex, and 2 unknown karyotype
- 5 additional patients had clinical CR but did not perform bone marrow assessment (some due to COVID precautions)

Data cutoff: August 10, 2020

CI, confidence interval; CR, complete response; CRi, complete response with incomplete bone marrow recovery; DOR, duration of response; IGHV, gene encoding for immunoglobulin heavy chain variable region; mo, months; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, PR with lymphocytosis; SD, stable disease. ^a 2-sided Clopper-Pearson 95% confidence intervals. ^b Data cutoff for 2019 ASH presentation: August 7, 2019; Tam CS, et al. *Blood*. 2019;134(Supplement 1):499.

Progression-Free Survival and Overall Survival Investigator Assessment

- 12 patients had investigator-reported PD
 - 5 patients had investigator-assessed RT
 - Median time to transformation was 13.6 mo (range, 3.9 15.7)
- 1 patient had PD after discontinuing study drug treatment due to AE

- Reasons for death
 - 2 AE (pneumonia, renal failure (in the context of PD))
 - 3 PD (2 RT)
 - 1 sepsis after PD due to RT
- · No reported sudden deaths

Progression-Free Survival by IGHV and Karyotype Status Investigator Assessment

Data cutoff: August 10, 2020. Median follow-up (range): 21.9 months (5.0 – 30.2)

CI, confidence interval; IGHV, gene encoding for immunoglobulin heavy chain variable region; mo, month; PFS, progression-free survival.

^a 2-sided Clopper-Pearson 95% confidence intervals. ^b 5 patients had RNA quantity/quality not sufficient for PCR amplification of heavy-chain variable (VH) region for sequencing. ^c 23 patients had insufficient metaphases available for analysis.

Progression-Free Survival by IGHV and Karyotype Status Investigator Assessment

With limited follow-up, PFS appears similar at this time between patients with unmutated versus mutated IGHV as well as between patients with complex versus non-complex karyotype

Data cutoff: August 10, 2020. Median follow-up (range): 21.9 months (5.0 – 30.2)

CI, confidence interval; IGHV, gene encoding for immunoglobulin heavy chain variable region; mo, month; PFS, progression-free survival.

^a 2-sided Clopper-Pearson 95% confidence intervals. ^b 5 patients had RNA quantity/quality not sufficient for PCR amplification of heavy-chain variable (VH) region for sequencing. ^c 23 patients had insufficient metaphases available for analysis.

Summary

- With a median follow-up of 21.9 mo, zanubrutinib monotherapy demonstrated an ORR of 94.5%, 18-mo PFS of 90.6%, and 18-mo OS of 95.4% in a cohort of 109 TN CLL/SLL patients with del(17p)
 - -PFS appears to be preserved in patients with unmutated IGHV and complex karyotype
- Zanubrutinib tolerability was generally consistent with previous reports of zanubrutinib treatment in patients with various B-cell malignancies^{1,2,3,4}
- Additional data from this cohort are now published online⁵

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASH® and the author of this poster.

CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; IGHV, gene encoding for immunoglobulin heavy chain variable region; mo, month(s); ORR, overall response rate; OS, overall survival; PFS, progression-free survival; TN, treatment-naïve.

1. Tam CS, et al. *Blood*. 2020;136:2038-2050. 2. Song Y, et al. *Clin Cancer Res*. 2020;26:4216-4224. 3. Tam CS, et al. *Blood*. 2019;134:851-859. 4. Tam CS, et al. *EHA*. 2019;Abstract: PS1159. 5. Tam CS, et al. *Haematologica*. 2020;[epub ahead of print].

Acknowledgements

- We thank the investigators, site support staff, and especially the patients and their caretakers for participating in the SEQUOIA study
- This study was sponsored by BeiGene. Editorial support was provided by Bio Connections LLC and funded by BeiGene

Corresponding Author:

Jennifer R. Brown, MD, PhD, e-mail: Jennifer Brown@dfci.harvard.edu

Disclosures

- JRB: Consulting role with AbbVie, AstraZeneca, BeiGene, Catapult, Dynamo Therapeutics, Eli Lilly and Company, Juno/Celgene, Kite, MEI Pharma, Nextcea, Novartis, Octapharma, Pfizer, Rigel Pharmaceuticals, Sunesis, TG Therapeutics, Verastem; advisory role for Invectys (data safety monitoring committee); research funding from Gilead, Loxo, Sun, and Verastem
- TR: Honoraria from Janssen, AbbVie, Sandoz, Novartis, Octapharma; Consulting role with Janssen, Takeda, AbbVie, Momenta; research funding from Acerta, Pfizer, Janssen, Morphosys ,AbbVie, BeiGene, UCB, Roche, UTX-TGR, AstraZeneca, GSK, BMS; travel expenses from Roche, Janssen, and AbbVie
- PG: Honoraria and consulting role with AbbVie, ArQule, AstraZeneca, BeiGene, Gilead, Janssen, Juno, Lilly, MEI, Sunesis; Research funding from AbbVie, Gilead, Janssen, and Sunesis
- BSK: Consulting role with BeiGene, AbbVie, Pharmacyclics, Janssen, Acerta, AstraZeneca; advisory role for BeiGene, Janssen, AstraZeneca; research funding from BeiGene, and Acerta
- PW: employment with Alfred Health and Peninsula Health; travel expenses from Roche
- WJ: Consulting with AstraZeneca; advisory role for Celgene, Amgen, and Janssen
- HChang: Advisory role for Janssen and AbbVie; research funding and speakers' bureau with Janssen
- MShadman: Consulting and advisory role with AbbVie, Genentech, AstraZeneca, Sound Biologics, Pharmacyclics, Verastem, ADC Therapeutics, BeiGene, Cellectar, BMS, Mophosys and Atara Biotherapeutics; research funding from Mustang Bio, Celgene, Pharmacyclics, Gilead, Genentech, AbbVie, TG therapeutics, BeiGene, AstraZeneca, and Sunesis
- PSG: Has nothing to disclose
- LL: Has nothing to disclose
- SO: Honoraria from Roche, AbbVie, Janssen, Merck, AstraZenca; consulting role with AbbVie, Roche, BeiGene, Janssen, Gilead, Merck; advisory role with AbbVie, Merck, Janssen, AstraZeneca, BeiGene, Roche, CSL, Gilead; research funding from AbbVie, Merck, Janssen, Astra Zeneca, BeiGene, Roche, Epizyme, and Gilead
- MT: Has nothing to disclose
- HC: Employment with Copernicus Wojewódzkie centrum Onkologii
- EV: Employment with Concord Repatriation General Hospital; research funding from Janssen-Cilag Pty Ltd
- Mš: Honoraria from Janssen-Cilag, AbbVie; consulting role with Janssen-Cilag, AbbVie; travel expenses from Janssen-Cilag, AbbVie, and Gilead
- AO: Employment with Karolinska University Hospital; research funding from BeiGene
- MT: Has nothing to disclose
- AT: Employment with Department of Hematology Niguarda Hospital Milano; speakers' bureau for Janssen spa; advisory role for Janssen spa, Astra Zeneca, BeiGene, and AbbVie
- PB: Has nothing to disclose
- JP, SF, VR and JH: employment and equity ownership with BeiGene
- FY: employment with BeiGene; equity ownership with BeiGene and Arcus Biosciences; patents/royalties with Cornell University
- PH: Honoraria with Janssen, AbbVie, AstraZeneca, Roche; advisory role for Janssen, AbbVie; research funding from Janssen, Pharmacyclics, AbbVie, Gilead, Roche; travel expenses from Janssen and AbbVie
- CT: Honoraria with Janssen, AbbVie, BeiGene; research funding from Janssen and AbbVie

Supplemental Data

SEQUOIA Arm C

Baseline Demographics and Disease Characteristics

	n = 109		n = 109
Demographics		Disease characteristics	
Age, median (range), y	70.0 (42-86)	del(13q), n (%)	72 (66.1)
Male, n (%)	78 (71.6)	del(11q), n (%)	37 (33.9)
ECOG PS of 2, n (%)	14 (12.8)	Trisomy 12, n (%)	20 (18.3)
Months since diagnosis, median (Q1-Q3)	21.62 (7.69–54.77)	IGHV mutational status ^a , n (%) Mutated	35 /104 (33.7)
Disease characteristics		Unmutated	69 /104 (66.3)
SLL, n (%)	10 (9.2)	Bulky disease ^b , n (%)	
Binet stage C for patients with CLL, n (%)	40 / 99 (40.4)	Any target lesion LDi ≥ 5 cm Any target lesion LDi ≥ 10 cm	42 (38.5) 11 (10.1)
Absolute lymphocyte count (×10 ⁹ /L), median	65.1	Karyotype status ^c , n (%) Non-Complex (0 to 2 abnormalities)	54 / 86 (62.8)
Hemoglobin (g/L), median	120.0	Complex 3 or more abnormalities 5 or more abnormalities 23 / 86 (26.7)	
Platelet count (×10 ⁹ /L), median	154.0		

CLL, chronic lymphocytic leukemia; ECOG PS, Eastern Cooperative Oncology Group performance status; IGHV, gene encoding for immunoglobulin heavy chain variable region; LDi, longest diameter; SLL, small lymphocytic lymphoma.

a 5 patients had RNA quantity/quality not sufficient for PCR amplification of heavy-chain variable (VH) region for sequencing. Patients with any target lesion with longest diameter presented.

^{° 23} patients had insufficient metaphases available for analysis.

Common AEs Regardless of Causality Any Grade ≥ 10% or Grade 3 or Higher ≥ 2%

Summary of Grade ≥ 3 and Serious AEs

Events, n (%)	n = 109			
Patients with Grade ≥ 3 AE	57 (52.3)			
Grade ≥ 3 AEs that occurred in > 2 patients				
Neutropenia/decreased neutrophil count	17 (15.6)			
Pneumonia	5 (4.6)			
Fall	3 (2.8)			
Hypertension	3 (2.8)			
Serious AE	42 (38.5)			
Treatment discontinuation due to AE ^a	5 (4.6)			
Grade 5 AE ^b	2 (1.8)			

Data cutoff: August 10, 2020.

AE, adverse event.

^a Pneumonia leading to sepsis and death, pseudomonal sepsis, melanoma, renal failure in the context of disease progression, and unknown at the data cutoff. ^b Pneumonia leading to sepsis and death, and renal failure in the context of disease progression, both of which also led to treatment discontinuation.