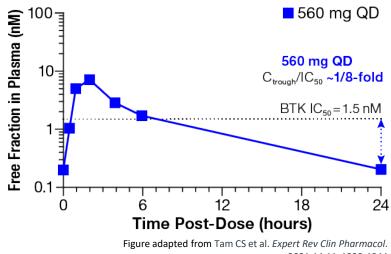


American Society of Hematology Helping hematologists conquer blood diseases worldwide

Zanubrutinib Demonstrates Superior Progression-Free Survival Compared with Ibrutinib for Treatment of Relapsed/Refractory Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma: Results from Final Analysis of ALPINE Randomized Phase 3 Study

Jennifer R. Brown, MD, PhD¹, Barbara Eichhorst, MD², Peter Hillmen, MD PhD³, Nicole Lamanna, MD⁴, Susan M. O'Brien, MD⁵, Constantine S. Tam, MBBS, MD^{6,7}, Lugui Qiu, MD⁸, Maciej Kaźmierczak, MD, PhD⁹, Wojciech Jurczak, MD, PhD¹⁰, Keshu Zhou, MD, PhD¹¹, Martin Simkovic MD, PhD^{12,13}, Jiri Mayer, MD¹⁴, Amanda Gillespie-Twardy, MD¹⁵, Alessandra Ferrajoli, MD¹⁶, Peter S. Ganly, BMBCh, PhD¹⁷, Robert Weinkove, MBBS, PhD^{18,19}, Sebastian Grosicki, MD, PhD²⁰, Andrzej Mital, MD, PhD²¹, Tadeusz Robak, MD, PhD²², Anders Osterborg, MD, PhD^{23,24}, Habte A. Yimer, MD²⁵, Tommi Salmi, MD²⁶, Megan (Der Yu) Wang, PharmD²⁶, Lina Fu, MS²⁶, Jessica Li, MS²⁶, Kenneth Wu, PhD²⁶, Aileen Cohen, MD, PhD²⁶, Mazyar Shadman, MD, MPH^{27,28}

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²University of Cologne, Cologne, Germany; ³St James's University Hospital, Leeds, United Kingdom; ⁴Columbia University, New York, NY, USA; ⁵University of California, Irvine, CA, USA; ⁶The Alfred Hospital, Melbourne, Victoria, Australia; ⁷Monash University, Melbourne, Victoria, Australia; ⁸National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; ⁹Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland; ¹⁰Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; ¹¹Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; ¹²4th Department of Internal Medicine - Hematology and University Hospital, Brno, Czech Republic; ¹³Beug Ridge Cancer Care, Roanoke, VA, USA; ¹⁶Department of Lukemia, The University of Faces MD Anderson Cancer Center, Houston, TX, USA; ¹⁰Department of Hematology, Antistchurch, New Zealand; ¹³Fa Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand; ¹³Department of Hematology and Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland; ¹²Department of Hematology, Medical University of Gdańsk, Poland; ²²Department of Hematology and Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland; ²⁴Department of Hematology, Medical University of Gdańsk, Poland; ²⁵Department of Hematology, Karolinska University of Gdańsk, Poland; ²⁵Pepartment of Hematology, Karolinska University of Sulesia, Statowice, Sonand, ²⁴Department of Hematology, Medical University of Gdańsk, Poland; ²⁵Pepartment of Hematology, Karolinska University of Sulesia, Katowice, Poland; ²⁴Department of Hematology, Medical University of Gdańsk, Poland; ²⁵



merican Society *of* Hematology

Bruton Tyrosine Kinase Inhibition in CLL: Background

- B-cell antigen receptor (BCR) signaling is required for tumor expansion and proliferation in CLL and B-cell lymphomas¹
 - BCR signaling is dependent on BTK (Bruton's Tyrosine Kinase)
- Ibrutinib, a first-in-class, covalent BTK inhibitor, has transformed CLL therapy; however, it has properties that limit use
 - Treatment discontinuation from toxicities has been reported in 16%-23% of patients³⁻⁶
 - Exposure coverage between dosing intervals falls below IC₅₀ and variable BTK occupancy at trough has been observed

Ibrutinib concentration-time profile

2021;14:11, 1329-1344

1. Singh SP, Dammeijer F and Hendriks RW. *Molecular Cancer*. 2018; 17:57.; 2. Molis S, Matures E, Tam C, Polliack A. *Hematol Oncol*. 2020; 38: 129-136; 3. Sharman JP, Black-Shinn JL, Clark J, et al. *Blood*. 2017;130(suppl 1):4060; 4. Mato AR, Nabhan C, Thompson MC, et al. *Haematologica*. 2018;103(5):874-879; 5. Munir T, Brown JR, O'Brien S, et al. *Am J Hematol*. 2019;94(12):1353-1363; 6. Ghia P, Owen C, Robak T, et al. EHA Abstract EP636 2021.

Zanubrutinib: Differentiating Features and Background

- Zanubrutinib is a second-generation Bruton tyrosine kinase inhibitor (BTKi)
 - Zanubrutinib was designed to have greater BTK specificity than ibrutinib
 - Zanubrutinib has exposure coverage above its IC₅₀
 - Higher drug-concentration/IC₅₀ ratios would be expected to lead to more sustained and complete BTK inhibition to improve efficacy
- Zanubrutinib has demonstrated superior PFS by IRC over chemoimmunotherapy in treatmentnaive CLL/SLL patients without del(17p)¹

¹Tam CS, Brown JB, Kahl BS, et al. Lancet Oncol. 2022. https://doi.org/10.1016/S1470-2045(22)00293-5

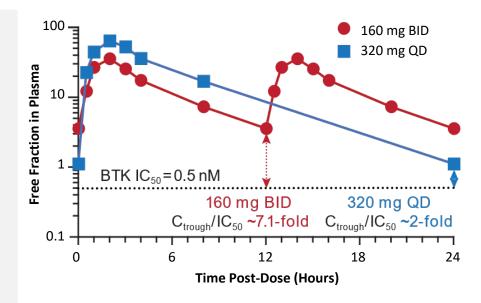


Figure modified from Ou YC, Tang Z, Novotny W, et al *Leukemia & Lymphoma*. 2021; 62(11):2612-2624.

ALPINE Study Design

R/R CLL/SLL with ≥ 1 prior treatment (Planned N=600, Actual N=652)

Key Inclusion Criteria

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

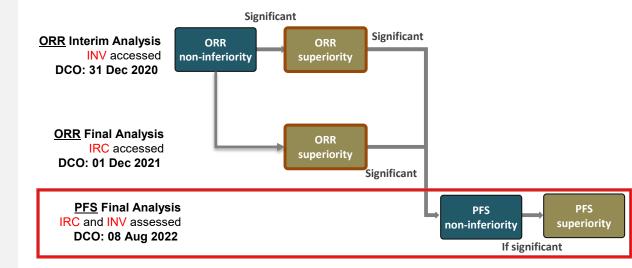
Key Exclusion Criteria

- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists

R 1:1 Stratification factors: age, geographic region, refractoriness, del(17p)/TP53 Canubrutinib 160 mg BID Ibrutinib 420 mg QD Treatment until disease progression or unacceptable toxicity

Endpoints and Statistical Design

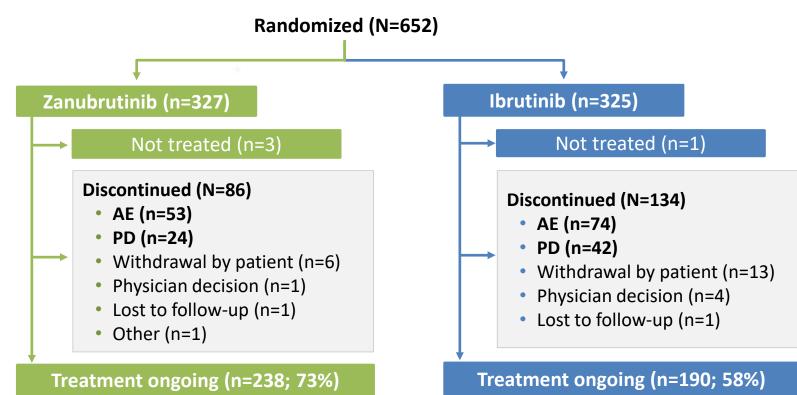
Primary Endpoint


• ORR (PR+CR) noninferiority and superiority (by investigator)

Key Secondary Endpoints

- PFS
- Incidence of atrial fibrillation

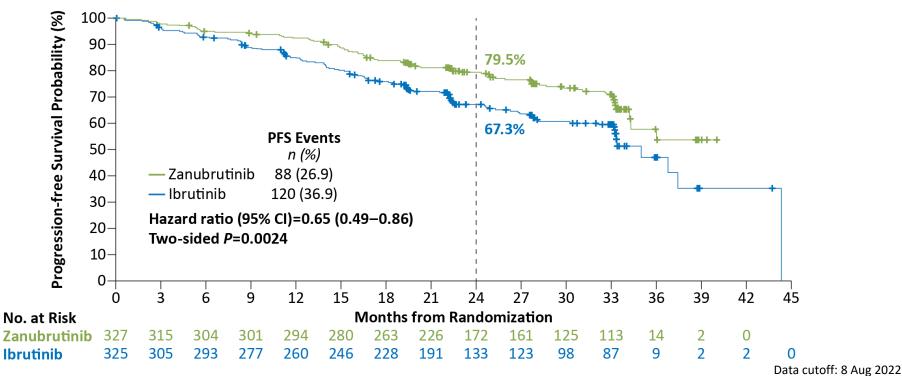
Other Secondary Endpoints


- DoR, OS
- Time to treatment failure
- PR-L or higher
- Patient-reported outcomes
- Safety

Overall response rate noninferiority and superiority were demonstrated in the ORR interim and final analyses; PFS was tested for noninferiority under hierarchical testing when 205 events had occurred

Patient Disposition

Balanced Demographics and Disease Characteristics


	Zanubrutinib (n=327)	lbrutinib (n=325)
Age, median (range) ≥65 years, n (%)	67 (35-90) 201 (61.5)	68 (35-89) 200 (61.5)
Male, n (%)	213 (65.1)	232 (71.4)
ECOG PS ≥1, n (%)	198 (60.6)	203 (62.5)
Prior lines of systemic therapy, median (range) >3 prior lines, n (%)	1 (1-6) 24 (7.3)	1 (1-12) 30 (9.2)
del(17p) and/or <i>TP53^{mut},</i> n (%) del(17p) <i>TP53^{mut}</i> without del(17p)	75 (22.9) 45 (13.8) 30 (9.2)	75 (23.1) 50 (15.4) 25 (7.7)
del(11q), n (%)	91 (27.8)	88 (27.1)
IGHV mutational status, n (%) Mutated Unmutated	79 (24.2) 239 (73.1)	70 (21.5) 239 (73.5)
Complex karyotype*	56 (17.1)	70 (21.5)
Bulky disease (≥5 cm), n (%)	145 (44.3)	149 (45.8)

*Complex karyotype is defined as having \geq 3 abnormalities.

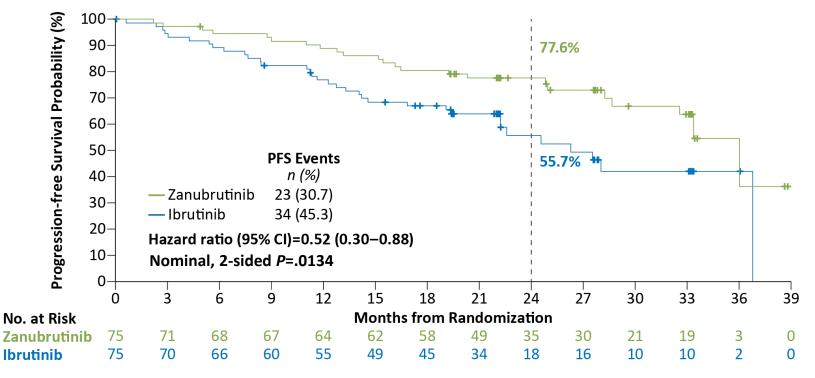
Zanubrutinib PFS by IRC Significantly Superior to Ibrutinib

Median study follow-up of 29.6 months

American Society of Hematology

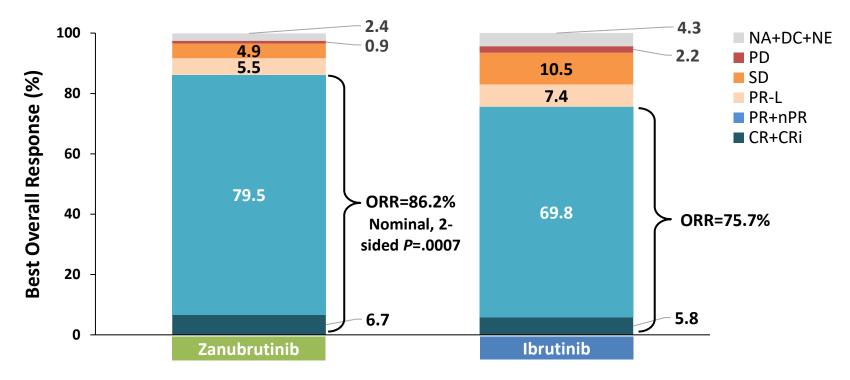
PFS Favored Zanubrutinib Across Subgroups

Subgroup	Zanubrutinik	b Ibrutinib	Hazard Ra	atio (95% Cl)ª	
	Response	e/Patients	ITT: 0.65		
Age group					
<65 years	23/126	43/125		0 42 (0.25, 0.70)	
≥65 years	65/201	77/200		0.78 (0.56, 1.09)	
Sex					
Male	59/213	91/232		0.61 (0.44, 0.84)	
Female	29/114	29/93		0.72 (0.43, 1.21)	
Prior lines of therapy					
1–3	80/303	102/295		0.67 (0.50, 0.90)	
>3	8/24	18/30	⊢●	0.45 (0.19, 1.04)	
Baseline <i>del</i> (17p)/ <i>TP53</i> mutation status					
Present	23/75	34/75		0.52 (0.30, 0.88)	
Absent	65/251	86/250	⊢	0.67 (0.49, 0.93)	
Baseline IGHV mutation status					
Unmutated	72/239	98/239	H 	0.64 (0.47, 0.87)	
Mutated	15/79	18/70	⊢ ♦ − 	0.63 (0.32, 1.26)	
Complex karyotype					
Yes	20/56	24/70		0.91 (0.50, 1.66)	
No	37/153	45/130		0.58 (0.37, 0.90)	
0.1 0.50 1.00 1.50 2.00					
→					
	Favors Zanubrutinib Favors Ibrutinib				


Data cutoff: 8 Aug 2022

S American Society *of* Hematology

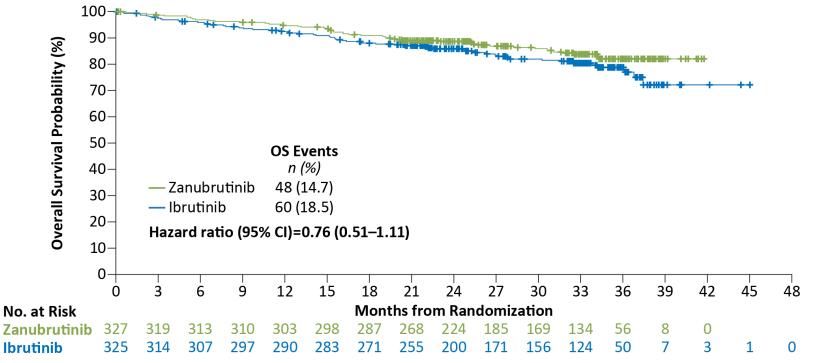
^aHazard ratio and 95% CI were unstratified for subgroups. 9


Zanubrutinib Improved PFS in Patients with del(17p)/TP53^{mut}

PFS data assessed by IRC

American Society of Hematology

Zanubrutinib Showed Higher ORR Assessed by IRC


CR, complete response; CRi, complete response with incomplete bone marrow recovery; nPR, nodular partial response; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable response; PD, progressive disease; NA, not assessed; DC, discontinued prior to first assessment; NE, not evaluable.

Data cutoff: 8 Aug 2022

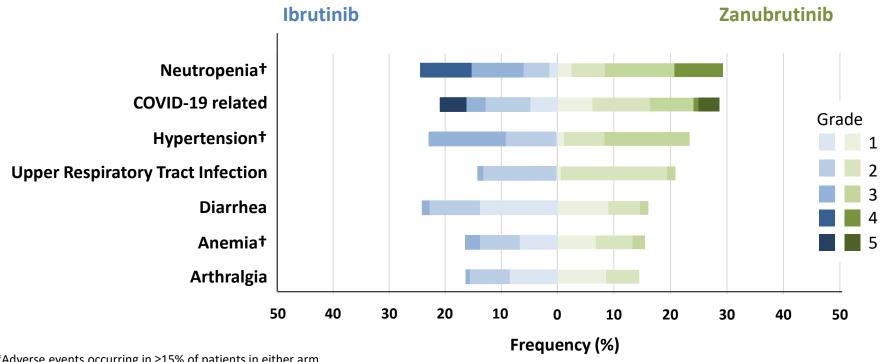
American Society of Hematology

Overall Survival

Fewer deaths with zanubrutinib compared with ibrutinib

Data cutoff: 8 Aug 2022

American Society of Hematology


Overall Safety/Tolerability Summary

Zanubrutinib safety profile was favorable to ibrutinib

	Zanubrutinib (n=324)	Ibrutinib (n=324)			
Median treatment duration, months	28.4	24.3			
Any grade adverse event	318 (98.1)	321 (99.1)			
Grade 3 to 5	218 (67.3)	228 (70.4)			
Grade 5	33 (10.2)	36 (11.1)			
Serious adverse event	136 (42.0)	162 (50.0)			
Adverse events leading to					
Dose reduction	40 (12.3)	55 (17.0)			
Dose interruption	162 (50.0)	184 (56.8)			
Treatment discontinuation	50 (15.4)	72 (22.2)			

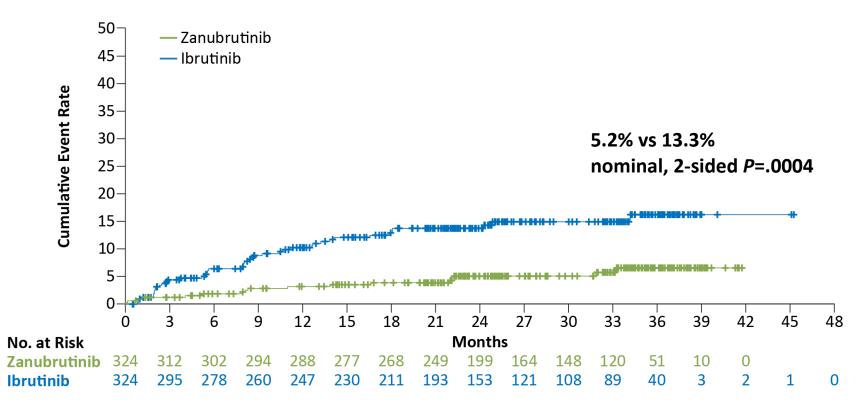
Most Common Adverse Events*

*Adverse events occurring in ≥15% of patients in either arm. †Pooled terms.

Zanubrutinib Had A Favorable Cardiac Profile

Lower rate of cardiac events, serious cardiac events, treatment discontinuation, and deaths

- Lower rate of serious cardiac adverse events reported with zanubrutinib
 - A fib/flutter (n=2)
 - MI/ACS (n=2)
 - CHF (n=2)
- Fatal cardiac events:
 - Zanubrutinib, n=0 (0%)
 - Ibrutinib, n=6 (1.9%)


	Zanubrutinib (n=324)	lbrutinib (n=324)
Cardiac adverse events	69 (21.3%)	96 (29.6%)
Serious cardiac adverse events	6 (1.9%)	25 (7.7%)
Cardiac adverse events leading to treatment discontinuation	1 (0.3)	14 (4.3)
Ventricular extrasystoles	1 (0.3)	0
Atrial fibrillation	0	5 (1.5)
Cardiac arrest	0	2 (0.6)*
Cardiac failure	0	2 (0.6)
Cardiac failure acute	0	1 (0.3)*
Congestive cardiomyopathy	0	1 (0.3)*
Myocardial infarction	0	1 (0.3)*
Palpitations	0	1 (0.3)
Ventricular fibrillation	0	1 (0.3)

Data cutoff: 8 Aug 2022

*Cardiac deaths. One death not listed due to myocardial infarction with ibrutinib discontinuation due to diarrhea 14 days prior to the fatal event.

Fewer Atrial Fibrillation/Flutter Events With Zanubrutinib

Conclusions

- Zanubrutinib demonstrated superior PFS over ibrutinib in patients with relapsed/refractory CLL/SLL
 - PFS benefit seen across all major subgroups, including the del(17p)/TP53^{mut} population
- Zanubrutinib has a favorable safety profile compared with ibrutinib
 - Lower rate of grade ≥3 and serious AEs, fewer AEs leading to treatment discontinuation and dose reduction
 - Zanubrutinib has a better cardiac profile than ibrutinib with lower rates of atrial fibrillation, serious cardiac events, cardiac events leading to treatment discontinuation, and fatal cardiac events
- ALPINE is the first study to demonstrate PFS superiority in a head-to-head comparison of BTK inhibitors in patients with relapsed/refractory CLL/SLL; zanubrutinib has now proven superiority to ibrutinib in both PFS and ORR.

ACKNOWLEDGEMENTS

- We would like to thank our independent data monitoring committee members for their efforts in this study.
- Additionally, we would like to thank the BeiGene ALPINE study team for all their efforts and hard work.
- Assistance with medical writing and editorial support, under the direction of the authors, was provided by Regina Switzer, PhD, and Elizabeth Hermans, PhD.

