
SAFETY/TOLERABILITY AND PRELIMINARY ANTITUMOR **ACTIVITY OF SITRAVATINIB PLUS TISLELIZUMAB IN PATIENTS** WITH PD-(L)1 REFRACTORY/RESISTANT UNRESECTABLE OR **METASTATIC MELANOMA FROM A PHASE 1B STUDY**

Chuanliang Cui,¹ Hongming Pan,² Matteo Carlino,³ Jiuwei Cui,⁴ Xuan Wang,¹ Xin Li,⁵ Jingchao Sun,⁵ Liu Yang,⁵ Jun Guo¹ ¹Beijing Cancer Hospital, Beijing, China; ²Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; ³Blacktown Hospital, Blacktown NSW, Australia; ⁴The First Hospital of Jilin University, Changchun, China; ⁵BeiGene (Beijing) Co., Ltd., Beijing, China

INTRODUCTION

- Immune checkpoint inhibitors (CPIs) are established as the standard of care in the first-line setting for patients with unresectable or metastatic melanoma; ¹⁻³ however, not all patients respond and a subset of patients who initially respond to CPI later relapse and develop drug resistance⁴
- Tislelizumab is an anti-PD-1 antibody engineered to minimize FcγR binding on macrophages in order to abrogate antibody-dependent phagocytosis, a mechanism of T-cell clearance and potential anti-PD-1 resistance⁵⁻⁷ (**Figure 1a**)
- Sitravatinib is an oral spectrum-selective tyrosine kinase inhibitor (TKI) targeting TAM (TYRO3, AXL, MER) and split (VEGFR2/KIT) receptors⁸
- Inhibition of these receptors reduces the number of myeloid-derived suppressor cells and regulatory T cells, while increasing the ratio of M1/M2-polarized macrophages, which may overcome an immunosuppressive tumor microenvironment and augment antitumor immune responses8 (Figure 1b)
- Combining an anti-PD-1 CPI with an agent that has both pleiotropic and antitumor properties could enhance the antitumor efficacy observed with either agent alone^{9,10}
- Tislelizumab plus sitravatinib is currently being investigated in several solid tumor types, including metastatic melanoma (NCT03666143)

Figure 1. Mechanism of Action of Tislelizumab (A) and Sitravatinib (B)

OBJECTIVE

To assess the safety/tolerability and preliminary antitumor activity of sitravatinib plus tislelizumab in solid tumors

METHODS

- Eligible patients had unresectable or metastatic melanoma refractory/resistant to PD-(L)1 inhibitors and had not received other prior immunotherapy (eg. anti-CTLA-4, -OX40, or -CD137) or anti-BRAF/MEK therapy (**Figure 2**)
 - Cohort G consisted of patients with melanoma
- Patients received oral sitravatinib 120 mg once daily and intravenous tislelizumab 200 mg once every 3 weeks until discontinuation
- The primary endpoint was safety/tolerability; key secondary endpoints included investigator-assessed objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS)

Figure 2. Study Design (BGB-900-103; NCT03666143)

Abbroviations: 1. lifet-line: Ab, antibody; ECOG PS, Eastern Cooparative performance status; VI, intravenously NSq, norequamous, NSQ, note-pt-pD, progressive disease; Pb-I, programmed cell ideath protein 1; Pb-L1, once-quilty cases, once-quilty cas Cooperative _ CLC, non-small ce 1; PD-L1, program 1 ance every 3 we

RESULTS

- As of October 13, 2020, 25 patients were enrolled; 16 patients (64%) remained on treatment (Figure 3)
- Median study follow-up was 5.5 months (range: 1.5-13.3)

Figure 3. Patient Disposition - Cohort G

Baseline Characteristics

- All patients received one prior line of PD-(L)1 therapy; median age was 51 years (range: 23-79)
- Baseline histology included cutaneous (n=12; 48%), acral (n=7; 28%), and mucosal (n=4; 16%) subtypes (Table 1)

Table 1. Baseline Characteristics

Baseline Characteristics		Melanoma (N=25)
Age, years	Median (range)	51 (23-79)
Sex, n (%)	Male Female	13 (52) 12 (48)
Race, n (%)	Asian White	23 (92) 2 (8)
ECOG PS, n (%)	0	3 (12) 22 (88)
Histology at initial diagnosis, n (%)	Cutaneous, chronic sun-induced damage Cutaneous, without chronic	4 (16) 8 (32)
	sun-induced damage Acral Mucosal Unknown	7 (28) 4 (16) 2 (8)
BRAF mutation, n (%)	Positive Negative	7 (28) 18 (72)
Prior systemic therapy, n (%)	Anti-PD-1/PD-L1	25 (100)
Prior lines of anticancer therapy, n (%)	1	25 (100)
Duration of last therapy, months	Median (range)	7 (2-28)

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1.

Safety

Tislelizumab treatment resulted in a dose delay in 40% of patients. while sitravatinib resulted in dose interruption in 72% of patients and dose reduction in 52% of patients (Figure 4)

Figure 4. Treatment Summary

- One patient (4%) reported a serious adverse event (AE) (Table 2) No AE led to death
- Increased ALT and AST were the most common TEAEs; hypertension
- (n=3; 12%) was the most common grade ≥3 AE

Table 2. Summary of Tolerability

Event, n (%)		Melanoma (N=25)
Patients with at least one TEAE Treatment-related		25 (100) 25 (100)
Grade ≥3 TEAE Treatment-related		12 (48) 9 (36)
Serious TEAE ^a Treatment-related		1 (4) 1 (4)
TEAE leading to treatment discontinuation	Tislelizumab Sitravatinib	1 (4) ^b 1 (4) ^c
TRAE leading to treatment discontinuation	Tislelizumab Sitravatinib	0 (0) 1 (4)

Event, n (%)	All Grades (N=25)	Event, n (%)	All Grades (N=25)
Increased ALT	19 (76)	Increased BB	9 (36)
Increased AST	17 (68)	Abnormal electrocardiogram T wave	9 (36)
Increased blood cholesterol	14 (56)	Hypertension	9 (36)
Hypertriglyceridemia	13 (52)	Palmar-Plantar erythrodysesthesia syndrome	8 (32)
Hypothyroidism	12 (48)	CK-MB increased	7 (28)
Weight decreased	12 (48)	Hyperuricemia	7 (28)
Increased BCK	10 (40)	Upper abdominal pain	6 (24)
Diarrhea	10 (40)	Vomiting	6 (24)
Increased GGT	10 (40)	Hypokalemia	5 (20)

- Treatment with sitravatinib plus tislelizumab resulted in a reduction in tumor burden (Figure 5)
 - -Confirmed ORR was 24.0% (95% CI: 9.36-45.13; all partial responses, n=6); DCR was 88.0% (95% CI: 68.78-9
- Responses to sitravatinib plus tislelizumab have lasted over 12 months; treatment is ongoing in 16 patients (Figure 6)
- Median PFS was 6.7 months (95% CI: 4.07, not evaluable; Figure 7)
- Figure 5. Antitumor Activity

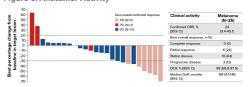
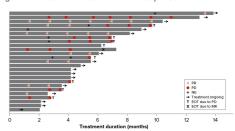
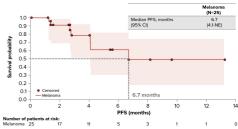




Figure 6. Duration of Treatment and Response in Melanoma

ent; MR, multiple reason; NE, non-evaluable; PD, dis Abbreviations: EOT, end of treat progression; PR. partial response

Figure 7. Investigator-Assessed PFS

nce interval; NE, non-evaluable; PFS, prog

CONCLUSIONS

- Tislelizumab in combination with sitravatinib was generally well tolerated and had a manageable safety/tolerability profile in patients with anti-PD-1/PD-L1 refractory/resistant unresectable or metastatic melanoma
- Most TEAEs were mild or moderate in severity and manageable
- No TEAEs lead to death
- The combination treatment also demonstrated preliminary antitumor activity, with patients achieving an ORR of 24%, DCR of 88%, and median PFS of 6.7 months (95% Cl: 4.1-not evaluable)
- The results from this phase 1b study support tislelizumab in combination with sitravatinib as a potential treatment option for patients with refractory/resistant unresectable or metastatic melanoma and further investigation is warranted

REFERENCES

Hodi FS, et al. N Engl J Med. 2010;363:711-723.
Robert C, et al. N Engl J Med. 2015;372:2821-2532.
Larlin, et al. N Engl J Med. 2015;372:2821-2532.
Larlin, et al. N Engl J Med. 2015;372:283-270.
Zhang T, et al. Cancer Immunol Immunolther. 2018;67:1079-1090.
Dahan R, et al. Cancer Cell. 2015;28:285-295.
Cin S, et al. Future Oncol. 2019;15:1811-1822.
Du W, et al. 2011 Insight. 2018;372:4184.
Demircan NC, et al. Am Transi Med. 2020;8:1714.
O Annor Fernandez AM, et al. Am Oncol. 2020;31:51142-S1215.

DISCLOSURES

Chuanliang Cui: No conflicts of interest. Hongming Pan: No conflicts of interest.

Matteo Carlino: ConsultingiAdvisory Role for BMS, MSD, Novartis, Amgen, Sanofi, Merck serono,
Petrere Fabre, Rocho, Ideaya, Regeneron, Nektar, Esia, Clobicte, Oncosec, Honoraria from BMS,
MSD, Novartis, Jiuwel Cui: No conflicts of interest. Xuan Wang: ConsultingiAdvisory Role for
Employment, Stock or Other Ownership at Bellicane, Liu Yang: Employment, Stock or Other
Ownership at Belicane. Jun Guo: ConsultingiAdvisory Role for MSD, Roche, Pitzer, Bayer,
Novartis, Simeere Pharmaceutical Group, Shanghal Junsh Blicsciences, Oriengene.