

First Interim Analysis of ALPINE Study: Results of a Phase 3 Randomized Study of Zanubrutinib vs Ibrutinib in Patients with R/R CLL/SLL

Marta Coscia^{1,2}, Peter Hillmen³, Barbara Eichhorst⁴, Jennifer J. Brown⁵, Nicole Lamanna⁶, Susan O'Brien⁷, Constantine S. Tam^{8,9}, Lugui Qiu¹⁰, Maciej Kazmierczak¹¹, Keshu Zhou¹², Martin Šimkovič^{13,14}, Jiri Mayer¹⁵, Amanda Gillespie-Twardy¹⁶, Mazyar Shadman^{17,18}, Alessandra Ferrajoli¹⁹, Peter S. Ganly^{20,21}, Robert Weinkove^{22,23}, Tommi Salmi²⁴, Kenneth Wu²⁴, Wojciech Jurczak²⁵

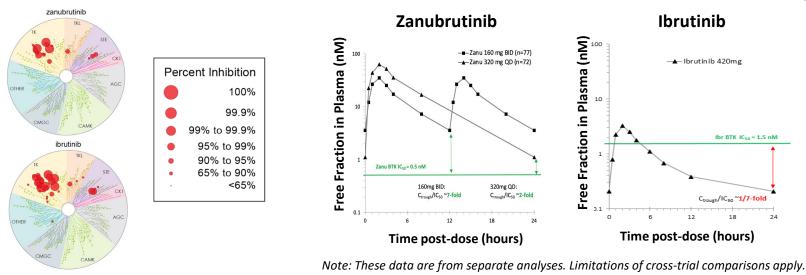
¹Department of Molecular Biotechnology and Health Sciences, University of Torino ²Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy; ³St James's University Hospital, Leeds, UK; ⁴Department of Internal Medicine, University of Cologne, Cologne, Germany; ⁵Dana-Farber Cancer Institute, Boston, MA, USA; ⁶Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; ⁷Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; ⁸The Alfred Hospital, Melbourne, VIC, Australia; ⁹Monash University, Clayton, VIC, Australia; ¹⁰Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China; ¹¹Department of Internal Medicine - Hematology, University Hospital, Hradec Kralove, Czech Republic; ¹⁴Faculty of Medicine, Charles University, Prague, Czech Republic; ¹⁵Department of Internal Medicine-Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic; ¹⁶Blue Ridge Cancer Care, Roanoke, VA, USA; ¹⁷Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹³Department of Medicine, University of Washington, Seattle, WA, USA; ¹⁹Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²⁰Department of Haematology, Christchurch Hospital, Christchurch, New Zealand; ²¹Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; ²²Wellington Blood and Cancer Centre, Capital and Coast District Health Board, Wellington, New Zealand; ²³Malaghan Institute of Medical Research, Wellington, New Zealand; ²⁴BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene USA, Inc., San Mateo, CA, USA; ²⁵Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland

> ROMA 26-28 Settembre 2022 Marriott Park Hotel

Disclosures for Marta Coscia

Consultant for AbbVie, AstraZeneca, and Janssen; research funding from AbbVie and Janssen.

Background


- Treatment of CLL/SLL has been transformed with the advent of effective inhibitors of B-cell receptor signaling^{1,2}, such as the BTK inhibitor ibrutinib^{3,4}
- Zanubrutinib is an irreversible, potent, next-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target inhibition of TEC- and EGFR-family kinases⁵
- We hypothesized that zanubrutinib may minimize toxicities related to ibrutinib off-target inhibition,⁶ and zanubrutinib⁵ may improve efficacy outcomes

BTK, Bruton tyrosine kinase; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; EGFR, epidermal growth factor receptor.

1. Aalipour A, et al. *Br J Haematol* 2013;163:436-443; 2. Ten Hacken E, et al. *Clin Cancer Res* 2014;20:548-556; 3. Imbruvica[®] (ibrutinib) [package insert]. Janssen Biotech, Inc; 2019; 4. Imbruvica[®] (ibrutinib) [SPC]. Janssen-Cilag International NV; 2018; 5. Tam CS, et al. *Blood* 2019;134:851-859; 6. Coutre SE, et al. *Blood Adv* 2019;3:1799-1807.

Pharmacokinetics and Selectivity of Zanubrutinib and Ibrutinib

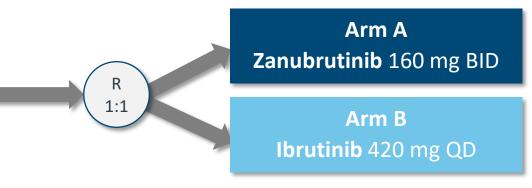
Whole Kinase Panel Selectivity Profiles

• Zanubrutinib has shown less off-target kinase inhibition, more potent BTK inhibition, and a longer time profile of free drug concentration, compared with ibrutinib

BID, twice daily; BTK, Bruton tyrosine kinase; C_{trough}, trough concentration; IC₅₀, 50% inhibitory concentration; QD, once daily Adapted from: 1. Kaptein A, et al. *Blood* 2018;132:1871; 2. Ou YC, et al. *Leuk Lymphoma* 2021;62:2612-2624; 3. Marostica E, et al. *Cancer Chemother Pharmacol*. 2015;75:111-121.

Free Drug Concentration Time Profiles Relative to IC₅₀

ALPINE: Phase 3, Randomized Study of Zanubrutinib vs Ibrutinib in Patients with Relapsed/Refractory CLL or SLL


R/R CLL/SLL with ≥ 1 prior treatment (planned N = 600, actual N = 652)

Key Inclusion Criteria

- R/R to ≥ 1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

Key Exclusion Criteria

- Current or past Richter's transformation
- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists

Stratification Factors

- Age
- Geographic region
- Refractory status
- del(17p)/TP53 mutation status

BID, twice daily; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; CT, computed tomography; del(17p), chromosome 17p deletion; MRI, magnetic resonance imaging; QD, once daily; R, randomized; R/R, relapsed/refractory; SLL, small lymphocytic lymphoma; *TP53*, gene encoding tumor protein p53.

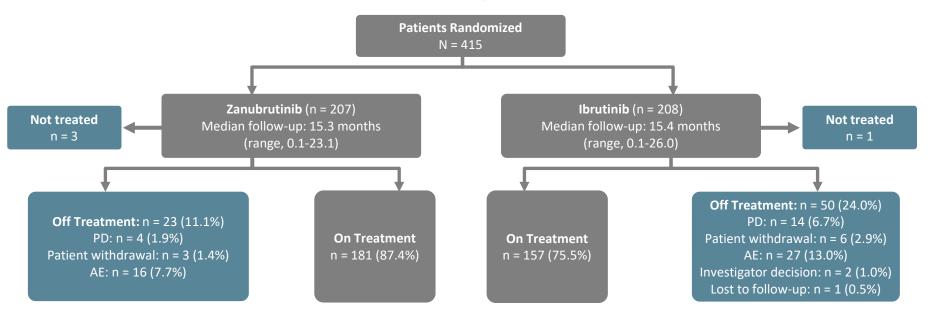
ANT THE R. S.

Endpoints and Analysis

Primary endpoint

 ORR (PR + CR) noninferiority and superiority as assessed by investigator

Secondary endpoints:


- Atrial fibrillation (any grade)
- DOR, PFS, OS
- Time to treatment failure
- PR-L or higher
- Patient-reported outcomes
- Safety

Preplanned interim analysis

- Data cutoff approximately 12 months after the randomization of 415 patients
- Data presented here are for the first 415 patients, and efficacy results are per investigator assessment

CR, complete response; DOR, duration of response; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; PR-L, partial response with lymphocytosis.

- Between November 5, 2018, and December 20, 2019, 415 patients were randomized
- With a median follow-up of 15.3 months in the zanubrutinib arm and 15.4 months in the ibrutinib arm, 87.4% of the zanubrutinib arm and 75.5% of the ibrutinib arm remained on treatment

AE, adverse event; PD, progressive disease.

Baseline Patient and Disease Characteristics

Characteristic	Zanubrutinib (n = 207)	Ibrutinib (n = 208)
Age, median (range)	67 (35, 90)	67 (36 <i>,</i> 89)
Age ≥ 65 years, n (%)	129 (62.3)	128 (61.5)
Male, n (%)	142 (68.6)	156 (75.0)
Disease stage, n (%)		
Binet stage A/B or Ann Arbor stage I/II	122 (58.9)	124 (59.6)
Binet stage C or Ann Arbor stage III/IV	85 (41.1)	84 (40.4)
ECOG PS ≥ 1, n (%)	128 (61.8)	132 (63.5)
Prior lines of therapy, median (range)	1 (1-6)	1 (1-8)
> 3 prior lines, n (%)	15 (7.3)	21 (10.1)
Prior chemoimmunotherapy, n (%)	166 (80.2)	158 (76.0)
del(17p) and/or mutant <i>TP53</i>	41 (19.8) ^a	38 (18.3)
del(17p), n (%)	24 (11.6)	26 (12.5)
TP53 mutated, n (%)	29 (14.0)ª	24 (11.5)
del(11q), n (%)	61 (29.5)	55 (26.4)
Bulky disease (≥ 5 cm), n (%)	106 (51.2)	105 (50.5)

- Treatment arms were well balanced for demographic and disease characteristics
- 11.6% in the zanubrutinib arm compared with 12.5% in the ibrutinib arm had del(17p)

^a2 patients with missing values.

del(17p), chromosome 17p deletion; del(11q), chromosome 11q deletion; ECOG PS, Eastern Cooperative Oncology Group performance status; *TP53*, gene encoding tumor protein p53.

ORR by Investigator Assessment

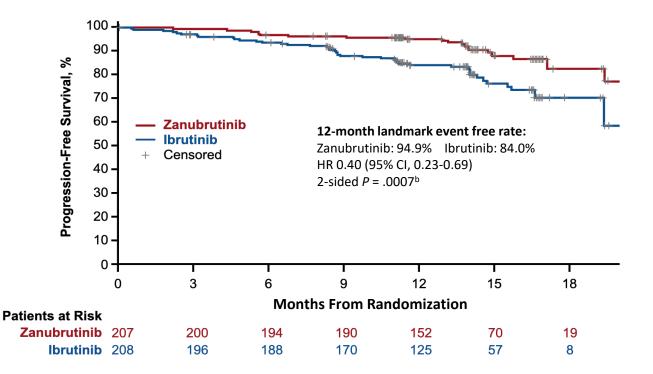
	Zanubrutinib (n = 207), n (%)	lbrutinib (n = 208), n (%)		
Primary endpoint:	162 (78.3)	130 (62.5)		
ORR (PR + CR)	95% CI: 72.0, 83.7	95% CI: 55.5, 69.1		
	Superiority 2-sided P = .0006 compared with pre-specified alpha of 0.0099			
CR/CRi	4 (1.9)	3 (1.4)		
nPR	1 (0.5)	0		
PR	157 (75.8)	127 (61.1)		
ORR (PR-L + PR + CR)	183 (88.4)	169 (81.3)		
PR-L	21 (10.1)	39 (18.8)		
SD	17 (8.2)	28 (13.5)		
PD	1 (0.5)	2 (1.0)		
Discontinued or new therapy	6 (2.9)	9 (4.3)		
prior to 1st assessment				
	del(17p) (n = 24), n (%)	del(17p) (n = 26), n (%)		
ORR (PR + CR)	20 (83.3)	14 (53.8)		

- After a median follow-up of 15 months, ORR was significantly higher with zanubrutinib (78.3%) vs ibrutinib (62.5%)
- In the subset of patients with del(17p), ORR was even higher for zanubrutinib (83.3%) vs ibrutinib (53.8%)

Cl, confidence interval; CR, complete response; CRi, complete response with incomplete bone marrow recovery; del(17p), chromosome 17p deletion; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease.

ORR by Investigator Assessment – Key Patient Subgroups

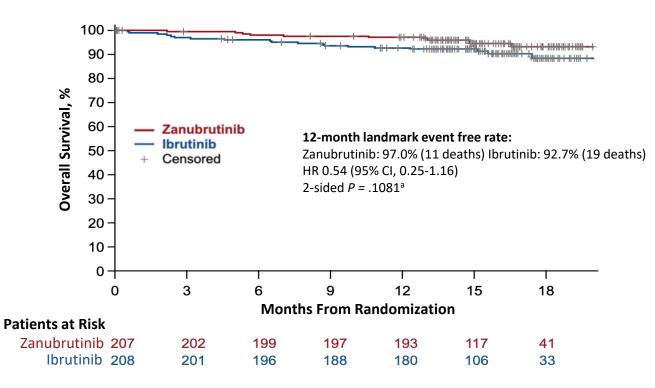
• ORR favored the zanubrutinib arm compared with the ibrutinib arm in most key patient subgroups, including age, sex, disease stage, number of prior lines of therapy, mutation status, and bulky disease


	Response/P	atients	Favors ibrutinib	Favors zanubrutinib	Risk Difference
Subgroup	Zanubrutinib	lbrutinib			(95% CI), %ª
All patients	162 / 207	130 / 208			15.8 (7.1, 24.4)
Age group <65 years ≥65 years	65 / 78 97 / 129	55 / 80 75 / 128			14.6 (1.5, 27.7) 16.6 (5.3, 27.9)
Sex Male Female	108 / 142 54 / 65	94 / 156 36 / 52			15.8 (5.4, 26.2) 13.8 (-1.7, 29.4)
Disease stage Binet stage of A/B or Ann Arbor stage I/II bulky Binet stage C or Ann Arbor stage III/IV	92 / 122 70 / 85	81 / 124 49 / 84		—	10.1 (-1.3, 21.4) 24.0 (10.7, 37.3)
Prior lines of therapy 1-3 >3	151 / 192 11 / 15	116 / 187 14 / 21			16.6 (7.6, 25.7) 6.7 (-23.5, 36.8)
Baseline del(17p)/TP53 mutation status Present Absent	33 / 41 127 / 164	19 / 38 111 / 170		_ _	30.5 (10.5, 50.5) 12.1 (2.5, 21.7)
Bulky disease Yes No	85 / 106 77 / 101	67 / 105 63 / 103			16.4 (4.5, 28.3) 15.1 (2.5, 27.6)
		-100 -:	75 -50 -25	0 25 50	75 100

^aUnstratified rate difference and 95% Cl.

Cl, confidence interval; del(17p), chromosome 17p deletion; ORR, overall response rate; TP53, gene encoding tumor protein p53.

PFS by Investigator Assessment^a


^aMedian PFS follow-up was 14.0 months for both zanubrutinib and ibrutinib arms by reverse KM method; ^bNot a prespecified analysis, formal analysis of PFS will be based on all patients when the target number of events are reached.

26-28 Settembre 2022 Marriott Park Hotel

K(

CI, confidence interval; HR, hazard ratio; KM, Kaplan-Meier; PFS, progression-free survival.

Overall Survival

^aNot a prespecified analysis. CI, confidence interval, HR, hazard ratio.

Safety Summary

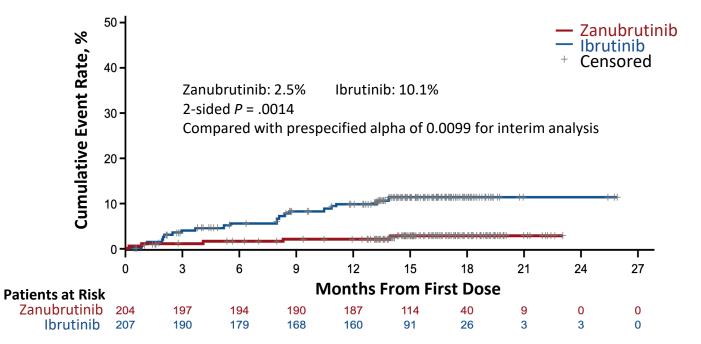
Safety Analysis Population, n (%)	Zanubrutinib (n = 204)	Ibrutinib (n = 207)
Any AE	195 (95.6)	205 (99.0)
Any Grade ≥ 3 AE	114 (55.9)	106 (51.2)
Serious AEs	56 (27.5)	67 (32.4)
Fatal AEs	8 (3.9)	12 (5.8)
AEs leading to dose reduction	23 (11.3)	25 (12.1)
AEs leading to dose interruption	81 (39.7)	84 (40.6)
AEs leading to treatment discontinuation	16 (7.8)	27 (13.0)

- Most patients experienced an AE, regardless of treatment arm
- Serious or fatal AEs were numerically higher in the ibrutinib vs the zanubrutinib arm
- The rate of AEs leading to treatment discontinuation was lower with zanubrutinib

Most Frequent AEs (> 10% All Grade in Either Arm)

	Zanubrutinib	Ibrutinib
Safety Analysis Population, n (%)	(n = 204)	(n = 207)
Patients with any AE	195 (95.6)	205 (99.0)
Diarrhea	34 (16.7)	40 (19.3)
Neutropenia	40 (19.6)	32 (15.5)
Anemia	27 (13.2)	31 (15.0)
Upper respiratory tract infection	44 (21.6)	29 (14.0)
Arthralgia	19 (9.3)	29 (14.0)
Hypertension	32 (15.7)	27 (13.0)
Muscle spasms	6 (2.9)	23 (11.1)
Contusion	21 (10.3)	18 (8.7)
Urinary tract infection	22 (10.8)	17 (8.2)
Cough	26 (12.7)	13 (6.3)

MARY AND A


Additional AEs of Special Interest^a

• Cardiac disorders of any grade were more frequently reported in the ibrutinib vs the zanubrutinib arm

Safety Analysis Population, n (%)	Zanubrutinib (n = 204)		Ibrutinib (n = 207)	
	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Cardiac disorders ^b	28 (13.7)	5 (2.5)	52 (25.1)	14 (6.8)
Atrial fibrillation and flutter (key 2 ^o endpoint)	5 (2.5)	2 (1.0)	21 (10.1)	4 (1.9)
Hemorrhage Major hemorrhage ^c	73 (35.8) 6 (2.9)	6 (2.9) 6 (2.9)	75 (36.2) 8 (3.9)	6 (2.9) 6 (2.9)
Hypertension	34 (16.7)	22 (10.8)	34 (16.4)	22 (10.6)
Infections	122 (59.8)	26 (12.7)	131 (63.3)	37 (17.9)
Neutropenia ^d	58 (28.4)	38 (18.6)	45 (21.7)	31 (15.0)
Thrombocytopenia ^d	19 (9.3)	7 (3.4)	26 (12.6)	7 (3.4)
Secondary primary malignancies Skin cancers	17 (8.3) 7 (3.4)	10 (4.9) 3 (1.5)	13 (6.3) 10 (4.8)	4 (1.9) 2 (1.0)

^aAll events are of any grade unless otherwise specified; ^bCardiac disorders leading to treatment discontinuation: zanubrutinib 0 patients and ibrutinib 7 (3.4%) patients; ^cIncludes hemorrhages that were serious or Grade \geq 3 or CNS hemorrhages of all grades; ^dPooled terms including neutropenia, neutrophil count decreased, and febrile neutropenia; thrombocytopenia and platelet count decreased. AE, adverse event; CNS, central nervous system.

Atrial Fibrillation/Flutter

• Atrial fibrillation and flutter were more frequently reported with ibrutinib (10.1%) vs zanubrutinib (2.5%); the rate was consistently higher in the ibrutinib arm over time

Conclusions

- In this interim analysis of a randomized, phase 3 ALPINE study in patients with relapsed/refractory CLL/SLL, zanubrutinib compared with ibrutinib, was shown to have:
 - A superior response rate
 - An improved PFS
 - A lower rate of atrial fibrillation/flutter
- These data support that more selective BTK inhibition, with more complete and sustained BTK occupancy results in improved efficacy and safety outcomes

Acknowledgments

We would like to thank the investigators, site support staff, and especially the patients and their caregivers for participating in this study. Participating countries: Australia, China, New Zealand, Belgium, Czech Republic, France, Germany, Italy, Poland, Spain, Sweden, The Netherlands, Turkey, United Kingdom and United States.

This study was sponsored by BeiGene.

Editorial support was provided by Medical Expressions and funded by BeiGene.

Correspondence: marta.coscia@unito.it