

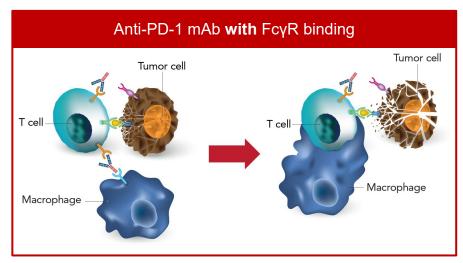
Safety/tolerability and preliminary antitumor activity of sitravatinib plus tislelizumab in patients with PD-(L)1 refractory/resistant unresectable or metastatic melanoma from a Phase 1b study

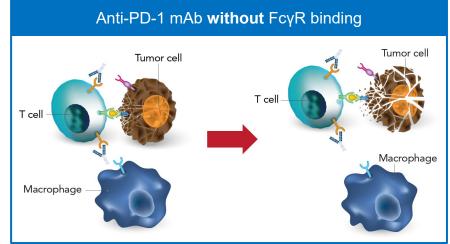
Chuanliang Cui, 1 Hongming Pan, 2 Matteo Carlino, 3 Jiuwei Cui, 4 Xuan Wang, 1 Cheng Chen, 5 Xiao Xiang, 5 Liu Yang, 5 Jun Guo 1

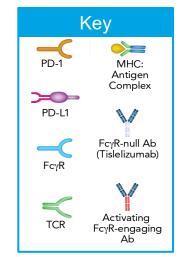
¹Beijing Cancer Hospital, Beijing, China; ²Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; ³Blacktown Hospital, Blacktown, Australia; ⁴The First Hospital of Jilin University, Changchun, China; ⁵BeiGene (Beijing) Co., Ltd., Beijing, China

Disclosures

Chuanliang Cui has no financial relationships to disclose


Background


Immune CPIs are established as the standard of care in the first-line setting for patients with unresectable or metastatic melanoma^{1–3}


However, not all patients respond and a subset of patients who initially respond to CPI, later relapse and develop drug resistance⁴

Tislelizumab is an anti-PD-1 antibody engineered to minimize FcγR binding on macrophages in order to abrogate antibody-dependent phagocytosis, a mechanism of T cell clearance and potential anti-PD-1 resistance^{5–7}

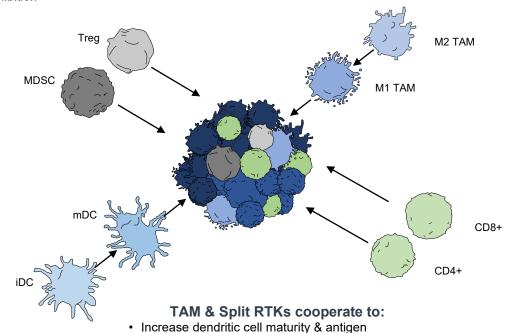
Tislelizumab MoA

Background

Sitravatinib is an oral spectrum-selective TKI targeting TAM (TYRO3, AXL, MER) and split (VEGFR2/KIT) receptors¹

Inhibition of these receptors reduces the number of MDSCs and regulatory T cells, while increasing the ratio of M1/M2-polarized macrophages, which may overcome an immunosuppressive tumor microenvironment and augment antitumor immune responses¹

Combining an anti-PD-1 CPI with an agent that has both pleiotropic and antitumor properties could enhance the antitumor efficacy observed with either agent alone^{2,3}


Tislelizumab plus sitravatinib is currently being investigated in several solid tumor types, including metastatic melanoma (NCT03666143)

Targeting Split RTKs (VEGFR2, KIT)

- Targeting VEGFR2 reduces Tregs & MDSCs
- · Targeting KIT also depletes MDSCs
- Releases brakes for expansion of CD8+ T cells via PD-1 inhibition

Targeting TAM (TYRO3, AXL, MER)

- Targeting MERTK & AXL shifts TAM type to M1
- M1 macrophages secrete cytokines that enhance immune response (IL-12, TNF)

- presentation capacityIncrease NK cell response
- · Increase T cell expansion & trafficking into tumors

Study design

Eligibility criteria:

- Age ≥ 18 years old
- Histologically or cytologically confirmed advanced or metastatic, unresectable solid tumors
- ECOG PS 0,1
- Adequate organ function

Cohort G: Anti-PD-1/PD-L1 antibody refractory/resistant unresectable or metastatic melanoma

Tislelizumab 200 mg IV Q3W + sitravatinib 120 mg PO QD

N = 20 for all cohorts

Cohort A: Nsq NSCLC; Anti-PD-1/PD-L1 Ab R/R

Cohort B: Nsq NSCLC; Anti-PD-1/PD-L1 Ab naïve

Cohort C: RCC; Anti-PD-1/PD-L1 Ab R/R

Cohort D: (China): RCC; Metastatic/advanced without prior systemic therapy

Cohort E: Anti-PD-1/PD-L1 Ab naïve recurrent platinum-resistant OC

Cohort F: Sq NSCLC; Anti-PD-1/PD-L1 Ab treated metastatic

Cohort H: Nsq NSCLC; Treatment-naïve, metastatic, positive (≥ 1%) PD-L1

Cohort I: Sq NSCLC; Treatment-naïve, metastatic, positive (≥ 1%) PD-L1

Progressive disease

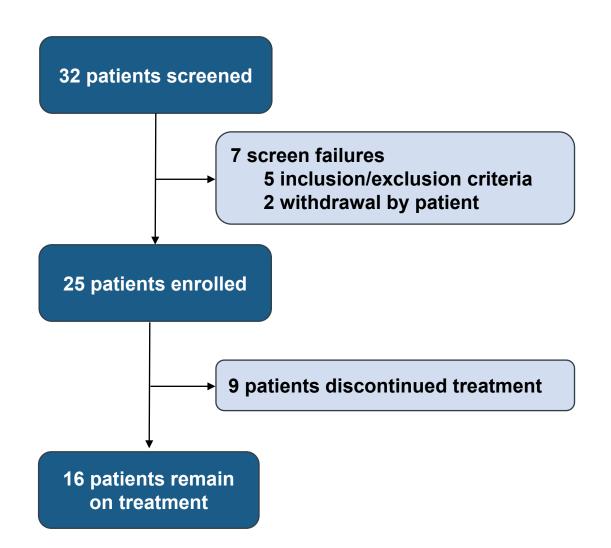
- Unacceptable toxicity
- Death
- Withdrawal of consent
- Study termination by sponsor

Key eligibility for Cohort G melanoma:

- PD on or after 1L anti-PD-1/PD-L1
- No other prior immunotherapy (including but not limited to anti-CTLA-4)
- · No prior exposure to anti-VEGF or VEGFR TKIs
- Documented BRAF mutation status

Key endpoints:

• **Primary:** Safety and tolerability


· Secondary: Antitumor activity

• Exploratory: PK and immunogenicity

Data cut-off:
October 13, 2020

Patient disposition – Cohort G

At the data cut-off, October 13, 2020, a total of 25 patients had been enrolled into the cohort and 16 patients remained on treatment

	Melanoma (N=25)
Median duration of follow-up, months (range)	5.5 (1.5–13.3)

Baseline characteristics

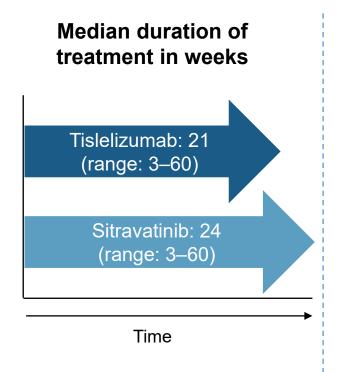
	Melanoma (N=25)
Median age, years (range)	51 (23–79)
Sex, n (%)	
Male	13 (52)
Female	12 (48)
Race, n (%)	
Asian	23 (92)
White	2 (8)
ECOG performance status, n (%)	
0	3 (12)
1	22 (88)
Histology at initial diagnosis, n (%)	
Cutaneous, chronic sun-induced damage	4 (16)
Cutaneous, without chronic sun-induced damage	8 (32)
Acral	7 (28)
Mucosal	4 (16)
Unknown	2 (8)

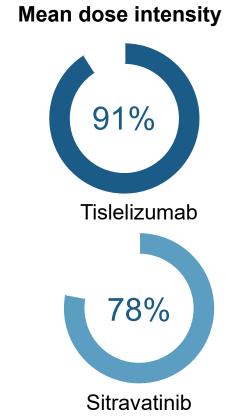
	Melanoma (N=25)
BRAF mutation, n (%)	
Positive	7 (28)
Negative	18 (72)
Prior systemic therapy, n (%)	
Anti-PD-1/PD-L1	25 (100)
Prior lines of anticancer therapy, n (%)	
1	25 (100)
Median duration of last therapy, months (range)	7 (2–28)

Safety summary

Serious AE was an anal abscess, was associated with sitravatinib

Tislelizumab discontinuation was due to vaginal hemorrhage


Sitravatinib discontinuation due to increased BCK


No AE or TRAE led to death

n (%)	Melanoma (N=25)
Patients with at least one AE	25 (100)
Treatment-related	13 (52)
≥ Grade 3 AE	12 (48)
Treatment-related	9 (36)
Serious AE	1 (4)
Treatment-related	1 (4)
AE leading to treatment discontinuation	
Tislelizumab	1 (4)
Sitravatinib	1 (4)
TRAE leading to treatment discontinuation	
Tislelizumab	0 (0)
Sitravatinib	1 (4)

Safety summary

had their dose

delayed*

72% had their dose interrupted

52% had their dose reduced

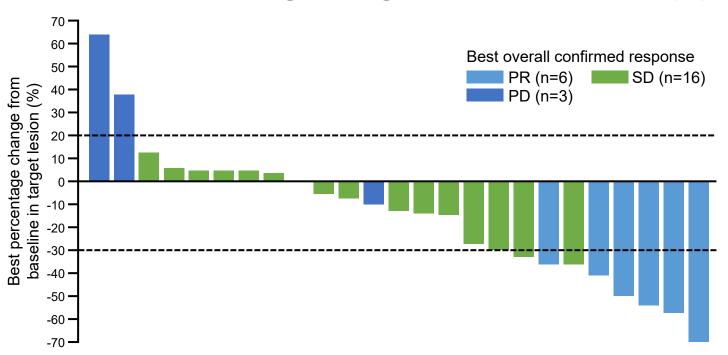
All grade and ≥ Grade 3 TEAEs

All grade with a frequency of ≥ 20%

Event, n (%)	All Grades (N=25)	Event, n (%)	All Grades (N=25)
Increased ALT	19 (76)	Increased BB	9 (36)
Increased AST	17 (68)	Abnormal electrocardiogram T wave	9 (36)
Increased blood cholesterol	14 (56)	Hypertension	9 (36)
Hypertriglyceridemia	13 (52)	Palmar-Plantar erythrodysaesthesia syndrome	8 (32)
Hypothyroidism	12 (48)	CK-MB increased	7 (28)
Weight decreased	12 (48)	Hyperuricemia	7 (28)
Increased BCK	10 (40)	Upper abdominal pain	6 (24)
Diarrhea	10 (40)	Vomiting	6 (24)
Increased GGT	10 (40)	Hypokalemia	5 (20)
Proteinuria	10 (40)		

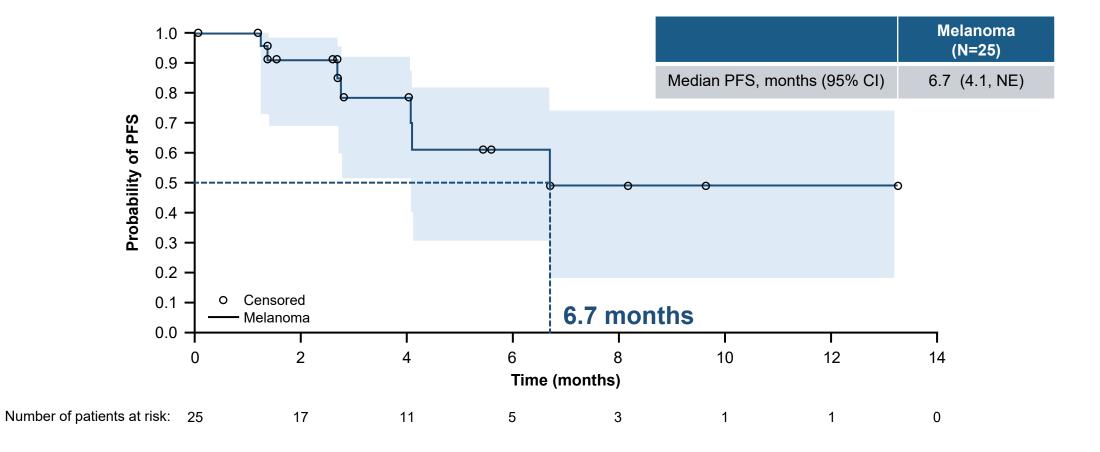
≥ Grade 3 with a frequency of ≥ 5%

Event, n (%)	≥ Grade 3 (N=25)
Hypertension	3 (12)
Increased ALT	2 (8)
Increased GGT	2 (8)

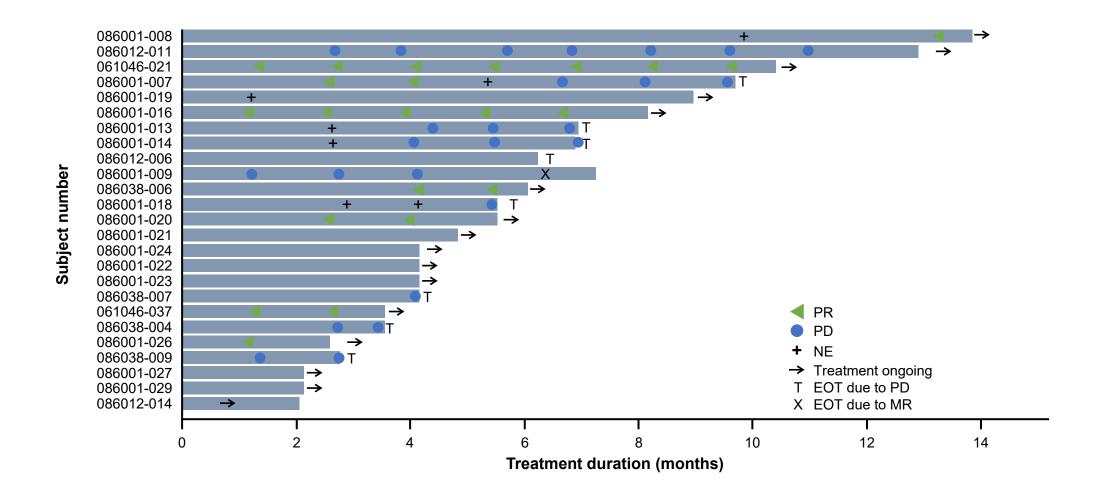

Hypertension (12%) was the most common ≥ Grade 3 TEAE

No patients discontinued treatment due to hypertension

Efficacy analysis


Maximum change in target lesion from baseline (%)

Clinical activity	Melanoma (N=25)	
Confirmed ORR, % (95% CI)	24 (9.4, 45.1)	
Best overall response, n (%)		
CR	0 (0)	
PR	6 (24)	
SD	16 (64)	
PD	3 (12)	
DCR, % (95% CI)	88 (68.8, 97.5)	
Median DoR, months (95% CI)	NR (4.1, NR)	



Investigator-assessed PFS

Duration of treatment with disease response in the melanoma cohort

Conclusions

- Tislelizumab in combination with sitravatinib was generally well tolerated and had a manageable safety/tolerability profile in patients with anti-PD-1/PD-L1 refractory/resistant unresectable or metastatic melanoma
 - Most TEAEs were mild or moderate in severity and manageable
 - No TEAEs led to death

• The combination treatment also demonstrated preliminary antitumor activity, with patients achieving an ORR of 24%, DCR of 88% and median PFS of 6.7 months (95% CI: 4.1, NE)



 The results from this Phase 1b study support tislelizumab in combination with sitravatinib as a potential treatment option for patients with refractory/resistant unresectable or metastatic melanoma and further investigation is warranted

Acknowledgements

The authors would like to thank the patients and their families for their participation in the study, and the site personnel for their support during the conduct of this important trial

The study was funded by BeiGene, Ltd. Medical writing support for the development of this presentation, under the direction of the authors, was provided by Louise Oakes, PhD, of Ashfield MedComms, an Ashfield Health company, and funded by BeiGene, Ltd.

