## Long-Term Exposure (LTE) to Tislelizumab, an Investigational Anti-PD-1 Antibody, in a First-in-Human Phase 1 Study

Jayesh Desai<sup>1,2</sup>, Benjamin Markman<sup>3</sup>, Michael Friedlander<sup>4</sup>, Hui Gan<sup>5</sup>, Lisa Horvath<sup>6</sup>, Amanda Townsend<sup>7</sup>, Michael Millward<sup>8</sup>, Michael Jameson<sup>9</sup>, Chia-Jui Yen<sup>10</sup>, Ming-Mo Hou<sup>11</sup>, Jeannie Hou<sup>12</sup>, John Wu<sup>12</sup>, Liang Liang<sup>13</sup>, Sanjeev Deva<sup>14</sup>

<sup>1</sup>Peter MacCallum Cancer Centre, Melbourne, Australia; <sup>2</sup>Royal Melbourne Hospital, Parkville, Australia; <sup>3</sup>Monash Health and Monash University, Melbourne, Australia; <sup>4</sup>Prince of Wales Hospital, Randwick, New South Wales, Australia; <sup>5</sup>Austin Hospital, Heidelberg, Victoria, Australia; <sup>6</sup>Chris O'Brien Lifehouse, Camperdown, Australia; <sup>7</sup>The Queen Elizabeth Hospital, Woodville South, South Australia, Australia; <sup>8</sup>Linear Clinical Research, Nedlands, Australia; <sup>9</sup>Regional Cancer Centre, Waikato Hospital, and the University of Auckland Waikato Clinical Campus, Hamilton, New Zealand; <sup>10</sup>National Cheng Kung University Hospital, Tainan, Taiwan; <sup>11</sup>ChangGung Memorial Hospital, Linkou, Taiwan; <sup>12</sup>BeiGene USA, Inc., San Mateo, California, United States; <sup>13</sup>BeiGene (Beijing) Co., Ltd., Beijing, China <sup>14</sup>Auckland City Hospital, Auckland, New Zealand

**Background** Tislelizumab (BGB-A317), an investigational monoclonal antibody with high affinity and specificity for PD-1, was engineered to minimize binding to FcγR on macrophages in order to abrogate antibody-dependent phagocytosis, a potential mechanism of resistance to anti-PD-1 therapy. Previous reports from early phase studies suggest tislelizumab was generally well tolerated and had antitumor activity in patients (pts) with advanced solid tumors. Clinical effects of tislelizumab LTE (>12 mo) in pts enrolled in the first-in-human study (NCT02407990) are presented here.

**Methods** Patients with advanced solid tumors received IV tislelizumab 0.5, 2, 5, or 10 mg/kg Q2W, 2 or 5 mg/kg administered Q2W or Q3W, or 200 mg IV Q3W. Antitumor activity was assessed by RECIST v1.1 criteria; PD-L1 expression was retrospectively assessed with the VENTANA PD-L1 (SP263) assay.

**Results** As of 31 Aug 2018, 63 of the 451 pts received tislelizumab for >12 mo. In these 63 pts, median age was 64 yr and 70% had received ≥1 prior systemic therapy. Tislelizumab LTE was most common in NSCLC (n=9), HCC (n=7), and bladder and ovarian (n=5 each) cancers. Four of the 5 pts who achieved CR during this study had LTE to tislelizumab (**Table**); all 4 pts were PD-L1+ (≥1% expression on tumor cells). Across the LTE cohort, ORR was 66.7%; PR and SD were observed in both PD-L1+ and PD-L1− tumors. The median time to CR/PR (3.7 mo) and duration of CR/PR (21.1 mo) were longer in pts with LTE than pts who responded but did not remain on treatment for >12 mo (2.1 and 6.3 mo, respectively). Rash was the only treatment-related AE (TRAE) reported in ≥15% of pts. Most TRAEs were of mild or moderate severity; arthritis, diarrhea, fatigue, granuloma, hyperglycemia, and lichenoid keratosis (n=1 each) were the only grade ≥3 TRAEs reported with tislelizumab LTE.

**Conclusion** Tislelizumab remained well tolerated for >12 mo and elicited durable responses in pts with a variety of tumor types regardless of PD-L1 status.

| Best Overall Response in Patients With Long-Term Exposure (>12 month) to Tislelizumab by PD-L1 Status   |                  |                  |                  |                 |
|---------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-----------------|
|                                                                                                         | PD-L1+<br>(n=35) | PD-L1–<br>(n=22) | Missing<br>(n=6) | Total<br>(N=63) |
| CR                                                                                                      | 4                | 0                | 0                | 4 (6.3%)        |
| PR                                                                                                      | 21               | 13               | 4                | 38 (60.3%)      |
| SD                                                                                                      | 9                | 9                | 2                | 20 (31.7%)      |
| PD                                                                                                      | 1                | 0                | 0                | 1 (1.6%)        |
| Abbreviations: CR, complete response; PD, progressive disease; PR, partial response; SD stable disease. |                  |                  |                  |                 |