ASPEN Biomarker Analysis: Response to Bruton Tyrosine Kinase Inhibitor (BTKi) Treatment in Patients with Waldenström Macroglobulinemia (WM) Harboring *CXCR4*, *TP53*, and *TERT* Mutations

Meletios Dimopoulos,¹ Stephen Opat,² Shirley D'Sa,³ Wojciech Jurczak,⁴ Hui-Peng Lee,⁵ Gavin Cull,⁶ Roger G. Owen,⁷ Paula Marlton,⁸ Bjorn E. Wahlin,⁹ Ramon Garcia-Sanz,¹⁰ Helen McCarthy,¹¹ Stephen Mulligan,¹² Alessandra Tedeschi,¹³ Jorge J. Castillo,¹⁴ Jaroslaw Czyż,¹⁵ Carlos Fernandez De Larrea Rodriguez,¹⁶ David Belada,¹⁷ Edward Libby,¹⁸ Jeffrey Matous,¹⁹ Marina Motta,²⁰ Tanya Siddiqi,²¹ Monica Tani,²² Marek Trněný,²³ Monique Minnema,²⁴ Christian Buske,²⁵ Veronique Leblond,²⁶ Steven P. Treon,¹⁴ Judith Trotman,²⁷ Binghao Wu²⁸, Yiling Yu²⁸, Zhirong Shen²⁸, Wai Y. Chan,²⁸ Jingjing Schneider,²⁸ Heather Allewelt,²⁸ Aileen Cohen,²⁸ and Constantine S. Tam²⁹

¹National and Kapodistrian University of Athens, Athens, Greece; ²Monash Health and Monash University, Clayton, Victoria, Australia; ³Centre for Waldenström's Macroglobulinemia and Associated Disorders, University College London Hospital Foundation Trust, London, United Kingdom; ⁴Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland; ⁵Flinders Medical Centre, Adelaide, SA, Australia; ⁶Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, Australia; ⁷St. James University Hospital, Leeds, United Kingdom; ⁸Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia; ⁹Karolinska Universitetssjukhuset and Karolinska Institutet, Stockholm, Sweden; ¹⁰Hospital Universitario de Salamanca, Salamanca, Spain; ¹¹Royal Bournemouth and Christchurch Hospital, Bournemouth, United Kingdom; ¹²Royal North Shore Hospital, Sydney, New South Wales, Australia; ¹³ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹⁴Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁵Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland; ¹⁶Hospital Clínic de Barcelona, Barcelona, Spain; ¹⁷FN Hradec Kralove, Hradec Králové, Czechia; ¹⁸University of Washington/Seattle Cancer Care Alliance - Clinical Research, Seattle, WA, USA; ¹⁹Colorado Blood Cancer Institute, Denver, Colorado, USA; ²⁰AO Spedali Civili di Brescia, Lombardia, Italy; ²¹City of Hope National Medical Center, Duarte, CA, USA; ²²Ospedale Civile Santa Maria delle Croci, AUSL Ravenna, Italy; ²³ Všeobecná fakultní nemocnice v Praze, Prague, Czechia; ²⁴University Medical Center Utrecht, Utrecht, Netherlands; ²⁵CCC Ulm - Universitätsklinikum Ulm, Ulm, Baden-Württemberg, Germany; ²⁶Sorbonne University, Pitié Salpêtrière Hospital, Paris, France; ²⁷Concord Repatriation General Hospital, Sydney, New South Wales, Australia; ²⁸BeiGene USA, Inc., San Mateo, CA, USA, and BeiGene (Shanghai) Co., Ltd., Shanghai, China; and ²⁹Peter MacCallum Cancer Center, Royal Melbourne Hospital and University of Melbourne, Parkville, Victoria, Australia

Background: *MYD88, CXCR4,* and *ARID1A* are the most frequently mutated genes in WM (*Blood* 2014;123[11]:1637-1646), and the mutational status of *MYD88* and *CXCR4* impacts BTKi ibrutinib efficacy in WM (*N Engl J Med* 2015;372(15):1430-1440; *Blood* 2020;136(18):2038-2050). ASPEN is a randomized, phase 3 study comparing zanubrutinib with ibrutinib in patients with *MYD88*^{WUT} WM; patients with *MYD88*^{WT} WM received zanubrutinib.

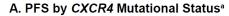
Aims: To evaluate low frequency genetic alterations in patients with WM and their association with efficacy of ibrutinib and zanubrutinib (separately and pooled) in different subpopulations.

Methods: 190 patients with *MYD88*^{MUT} (98 zanubrutinib; 92 ibrutinib) and 20 patients with *MYD88*^{WT} (all zanubrutinib) had evaluable NGS results. NGS was performed on pretreatment bone marrow aspirates

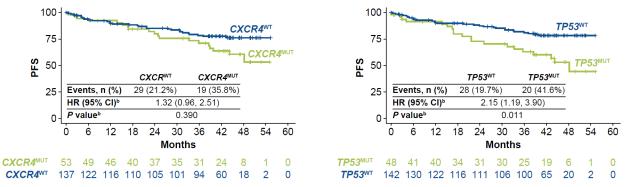
using a 152-gene panel with 0.25% sensitivity. Correlation between genetic alterations and treatment responses was analyzed by multivariate analyses.

Results: *CXCR4* (25.7%), *TP53* (24.8%), *ARID1A* (15.2%), and *TERT* (9.1%) were the most frequently mutated genes identified. *TP53*^{MUT} rates were similar between patients with *MYD88*^{MUT} and *MYD88*^{MUT}. *TERT*^{MUT} was detected only in patients with *MYD88*^{MUT} (10% [19/190] mutation rate). *ARID1A*^{MUT} and *TERT*^{MUT} were associated with a higher rate of *CXCR4*^{MUT} and were more often detected in patients with *MYD88*^{MUT}.

In the pooled analysis of patients with *MYD88*^{MUT} WM, patients with *CXCR4*^{MUT}, *TP53*^{MUT}, and *TERT*^{MUT} trended toward a lower very good partial response (VGPR) + complete response (CR) rate and a less favorable progression-free survival (PFS) than patients with the respective WT alleles (HR=1.32, 2.15, and 1.79, respectively) (Figure 1). The median time to response (VGPR+CR) also appeared longer in patients with mutant alleles.


As shown in Table 1, among *CXCR4*^{MUT} subgroups, a lower major response rate (MRR) was observed in patients with *CXCR4*nonsense (*CXCR4*^{NS}; 53.8%; *P* = 0.135) compared with *CXCR4*frameshift (*CXCR4*^{FS}; 85.7%; *P* = 0.958) and *CXCR4*^{WT} (84.7%) receiving ibrutinib, whereas comparable MRR was observed across all subpopulations receiving zanubrutinib (85.7%, 73.7%, and 83.1%, respectively). The median PFS (months) in patients receiving ibrutinib by *CXCR4*^{NS}, *CXCR4*^{FS}, and *CXCR4*^{WT} mutational statuses was 39.8, 44.2, and not reached (NR), respectively, and NR in all subpopulations receiving zanubrutinib.

The VGPR+CR rate (13.6% vs 30.0%; P=0.202) and MRR (63.6% vs 85.7%; P=0.040) were lower in patients with $TP53^{MUT}$ than $TP53^{WT}$ with ibrutinib; VGPR+CR rate (34.6% vs 37.5%; P=0.636) and MRR (80.8% vs 81.9%; P=0.978) were similar between $TP53^{MUT}$ and $TP53^{WT}$ subgroups with zanubrutinib.


Among the 20 patients with *MYD88*^{WT}, 4 had *TP53*^{MUT}, with a lower MRR (50%), and none achieved VGPR or CR, compared with *TP53*^{WT} (63% MRR and 25% VGPR+CR).

Conclusion: In addition to *CXCR4*^{MUT} and *ARID1A*^{MUT}, *TP53*^{MUT} and *TERT*^{MUT} were detected at a high rate in the ASPEN study. *CXCR4*^{MUT}, *TP53*^{MUT}, and *TERT*^{MUT} were correlated with inferior response to BTKi therapy, and more patients with *CXCR4*^{MUT} were present in the zanubrutinib arm. Consistent with more potent inhibition of BTK, zanubrutinib demonstrated deeper responses in patients with *CXCR4*^{MUT} or *TP53*^{MUT} WM compared with ibrutinib, with more favorable response regardless of the mutational status.

Figure 1. Progression-Free Survivals in patients with MYD88^{MUT} WM by (A) CXCR4 and (B) TP53 Mutational Status

B. PFS by TP53 Mutational Status^a

Data cutoff: October 31, 2021.

^aPooled analysis of patients with *MYD88*^{MUT} WM from cohort 1 including 98 treated by zanubrutinib and 92 treated by ibrutinib. ^bHR and *P* values were estimated using a Cox regression model with *CXCR4* (WT, FS, NS), *TP53* (WT, MUT), and *TERT* (WT, MUT) mutational statuses as covariates. WT is the reference group.

FS, frameshift; HR, hazard ratio; NS, nonsense; PFS, progression-free survival; WT, wild type.

		Patients with MYD88 ^{MUT} t	reated with ibrutinib		
	CXCR4 ^{WT}	CXCR4 ^{FS}	CXCR4 ^{NS}	TP53 ^{WT}	TP53 ^{MUT}
	(n=72)	(n=7)	(n=13)	(n=70)	(n=22)
VGPR or better, n (%) ^b	22 (30.6)	0	2 (15.4)	21 (30.0)	3 (13.6)
OR (95% CI)	-	0.14 (0.00,3.23)	0.64 (0.13,3.08)	-	0.44 (0.12,1.55)
P value	-	0.223	0.579	-	0.202
Major response, n (%) ^b	61 (84.7)	6 (85.7)	7 (53.8)	60 (85.7)	14 (63.6)
OR (95% CI)	-	1.06 (0.10, 10.36)	0.33 (0.07,1.41)	-	0.29 (0.09,0.95)
P value	-	0.958	0.135	-	0.040
Time to VGPR or better	11.3		31.3	11.4	24.9
Median (min, max), months	(2.0, 49.9)	-	(16.6, 46.0)	(2.0, 49.9)	(5.6, 46.9)
Time to major response	2.8	7.0	2.9	2.9	3.0
Median (min, max), months	(0.9, 49.8)	(2.8, 41.5)	(1.2, 13.6)	(0.9, 49.8)	(1.0, 13.8)
PFS					
Events, n (%)	18 (25.0%)	4 (57.1%)	7 (53.8%)	18 (25.7%)	11 (50.0%)
Median, months ^c	NE	44.2	39.8	NE	44.2
HR (95% CI) ^d	-	2.08 (0.70,6.16)	3.39 (1.23,9.31)	-	2.36 (1.10,5.09)
P value ^d		0.185	0.017		0.027
	Pa	tients with MYD88 ^{MUT} tre	ated with zanubrutinib		
	CXCR4 ^{WT}	CXCR4 ^{FS}	CXCR4 ^{NS}	TP53^{WT}	TP53^{MUT}
	(n=65)	(n=19)	(n=14)	(n=72)	(n=26)
VGPR or better, n (%) ^b	29 (44.6)	5 (26.3)	2 (14.3)	27 (37.5)	9 (34.6)
OR (95% CI)	-	0.51 (0.16,1.66)	0.24 (0.04,1.26)	-	1.27 (0.46,3.52)
P value	-	0.269	0.093	-	0.636
Major response, n (%) ^b	54 (83.1)	14 (73.7)	12 (85.7)	59 (81.9)	21 (80.8)
OR (95% CI)	-	0.66 (0.18,2.36)	1.52 (0.25,9.01)	-	1.01 (0.29,3.47)
<i>P</i> value	-	0.524	0.639	-	0.978
Time to VGPR or better	6.5	11.1	10.3	6.5	11.1
Median (min, max), months	(1.9, 42.0)	(2.8, 26.0)	(9.4, 11.1)	(1.9, 42.0)	(3.0, 26.0)
Time to major response	2.8	2.9	4.1	2.8	2.8
Median (min, max), months	(0.9, 28.5)	(1.8, 49.8)	(1.0, 38.7)	(0.9, 49.8)	(1.0, 5.6)
PFS					
Events, n (%)	11 (16.9%)	4 (21.0%)	4 (28.5%)	10 (13.8%)	9 (34.6%)
Median, months ^c	NE	NE	NE	NE	NE
HR (95% CI) ^d	-	0.62 (0.17, 2.25)	0.67 (0.15,2.88)	-	2.20 (0.81, 5.98)
P value ^d		0.473	0.598		0.120

Table 1. Response Assessment by CXCR4 and TP53 Mutational Statuses in Patients With MYD88^{MUT} WM^a

Data cutoff: October 31, 2021.

^aMutation determined by NGS; NGS results were available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm.

^bOR and *P* values were estimated using a logistic regression model with *CXCR4* (WT, FS, NS), *TP53* (WT, MUT), and *TERT* (WT,

MUT) mutational statuses as covariates. WT is the reference group.

^cMedian PFS was estimated by Kaplan-Meier method.

^dHR and *P* values were estimated using a Cox regression model with *CXCR4* (WT, FS, NS), *TP53* (WT, MUT), and *TERT* (WT, MUT) mutational statuses as covariates. WT is the reference group.

FS, frameshift; HR, hazard ratio; NE, not estimable; NGS, next-generation sequencing; NS, nonsense; OR, odds ratio; PFS, progression-free survival; VGPR, very good partial response; WM, Waldenström macroglobulinemia; WT, wild type.

Bold red text highlights *P* value <0.05.