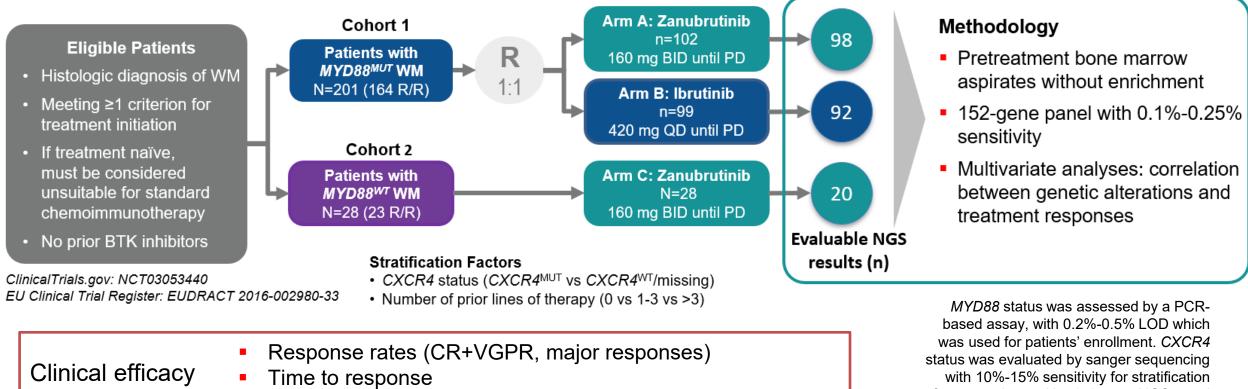
ASPEN Biomarker Analysis: Response to BTK Inhibitor Treatment in Patients With Waldenström Macroglobulinemia Harboring CXCR4, TP53, and TERT Mutations

Meletios Dimopoulos,¹ Stephen Opat,² Shirley D'Sa,³ Wojciech Jurczak,⁴ Hui-Peng Lee,⁵ Gavin Cull,⁶ Roger G. Owen,⁷ Paula Marlton,⁸ Bjorn E. Wahlin,⁹ Ramón García-Sanz,¹⁰ Helen McCarthy,¹¹ Stephen Mulligan,¹² Alessandra Tedeschi,¹³ Jorge J. Castillo,¹⁴ Jaroslaw Czyż,¹⁵ Carlos Fernández De Larrea Rodriguez,¹⁶ David Belada,¹⁷ Edward Libby,¹⁸ Jeffrey Matous,¹⁹ Marina Motta,²⁰ Tanya Siddiqi,²¹ Monica Tani,²² Marek Trněný,²³ Monique Minnema,²⁴ Christian Buske,²⁵ Veronique Leblond,²⁶ Steven P. Treon,¹⁴ Judith Trotman,²⁷ Binghao Wu²⁸, Yiling Yu²⁸, Zhirong Shen²⁸, Wai Y. Chan,²⁸ Jingjing Schneider,²⁸ Heather Allewelt,²⁸ Aileen Cohen,²⁸ and Constantine S. Tam²⁹

¹National and Kapodistrian University of Athens, Athens, Greece; ²Monash Health and Monash University, Clayton, Victoria, Australia; ³Centre for Waldenström's Macroglobulinemia and Associated Disorders, University College London Hospital Foundation Trust, London, United Kingdom; ⁴Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland; ⁵Flinders Medical Centre, Adelaide, SA, Australia; ⁶Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, Australia; ⁷St. James University Hospital, Leeds, United Kingdom; ⁸Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia; ⁹Karolinska Universitetssjukhuset and Karolinska Institutet, Stockholm, Sweden; ¹⁰Hospital Universitario de Salamanca, Salamanca, Spain; ¹¹Royal Bournemouth and Christchurch Hospital, Bournemouth, United Kingdom; ¹²Royal North Shore Hospital, Sydney, New South Wales, Australia; ¹³ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹⁴Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁵Collegium Medicum Medigoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland; ¹⁶Hospital Clínic de Barcelona, Barcelona, Spain; ¹⁷FN Hradec Kralove, Hradec Králové, Czechia; ¹⁸University of Washington/Seattle Cancer Cane Alliance - Clinical Research, Seattle, WA, USA; ¹⁹Colorado Blood Cancer Institute, Denver, Colorado, USA; ²⁰AO Spedali Civili di Brescia, Lombardia, Italy; ²¹City of Hope National Medical Center, Duarte, CA, USA; ²²Ospedale Civile Santa Maria delle Croci, AUSL Ravenna, Italy; ²³Všeobecná fakultní nemocnice v Praze, Prague, Czechia; ²⁴University Medical Center Utrecht, Utrecht, Netherlands; ²⁵CCC Ulm - Universitätsklinikum Ulm, Ulm, Baden-Württemberg, Germany; ²⁶Sorbonne University, Pitié Salpétrière Hospital, Paris, France; ²⁷Concord Repatriation General Hospital, Sydney, New South Wales, Australia; ²⁸BeiGene USA, Inc., San Mateo, CA, USA, and BeiGene (Shanghai) Co., Ltd., Shanghai, China; and ²⁹Peter MacCallum Cancer Ce

DISCLOSURES


 Constantine S. Tam has received honoraria from Janssen-Cilag, AbbVie, BeiGene, Loxo Oncology, and Novartis, and research funding from Janssen-Cilag, AbbVie, and BeiGene.

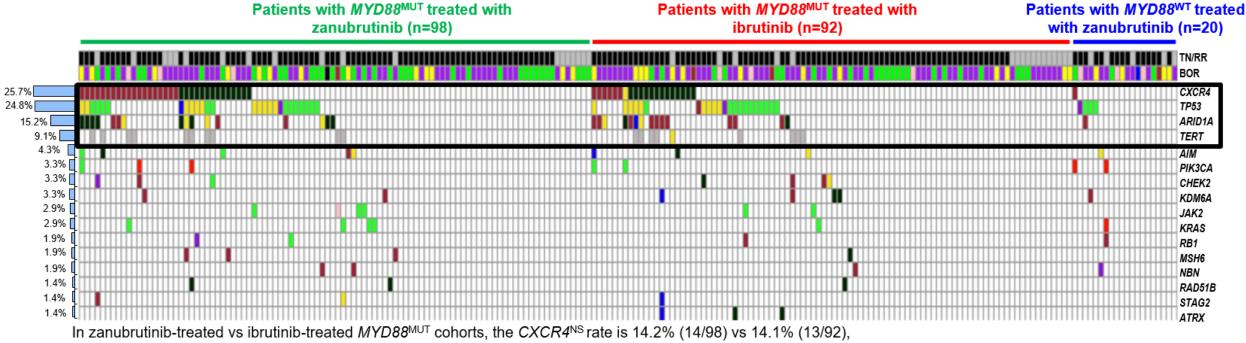
INTRODUCTION

- MYD88^{L265P}, CXCR4^{WHIM}, and ARID1A are the most frequently mutated genes in patients with WM¹
 - MYD88^{L265P} activating mutation triggers tumor-cell growth through BTK protein²
 - CXCR4^{WHIM} mutations promote cell survival signaling and confer ibrutinib resistance³
- Mutation status of MYD88 and CXCR4 impacts the efficacy of BTK inhibitors in patients with WM⁴⁻⁶
 - Prognosis is worse for patients with *MYD88*^{WT} WM than those with *MYD88*^{L265P 4,5}
 - Prognosis is worse for patients with CXCR4^{MUT} than those with CXCR4^{WT} in BTK inhibitor—treated WM (NS worse than FS)⁶
- The aim of this biomarker study is to evaluate low-frequency genetic alterations in patients with WM treated on the ASPEN phase 3 study and their association with efficacy of ibrutinib and zanubrutinib (separately and pooled) in different subpopulations

ARID1A, AT-rich interactive domain-containing protein 1A gene; BTK, Bruton tyrosine kinase; CXCR4, C-X-C chemokine receptor type 4 gene; FS, frameshift; MUT, mutant; MYD88, myeloid differentiation primary response 88 gene; NS, nonsense; WHIM; warts, hypogammaglobulinemia, infections, myelokathexis; WM, Waldenström macroglobulinemia; WT, wild type. 1. Hunter ZR, et al. *Blood* 2014;123:1637-1646; 2. Yang G, et al. *Blood* 2013;122:1222-1232. 3. Cao Y, et al. *Leukemia* 2015;29:169-76. 4. Treon SP, et al. *Blood* 2014;123:2791-2796. 5. Treon SP, et al. *N Engl J Med* 2015;372:1430-1440; 6. Castillo JJ, et al. *Br J Haematol* 2019;187:356-363.

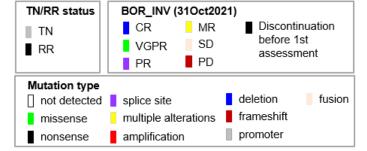
ASPEN is an Open-Label, Multicenter, Randomized Phase 3 Study of Zanubrutinib vs Ibrutinib in Patients With WM

endpoints include


PFS assessed according to response criteria in the NCCN® WM guidelines and modified Owen criteria¹ by investigator

with 10%-15% sensitivity for stratification factors and tested by 152-gene NGS panel with 0.1%-0.25% sensitivity for biomarker analysis.

BID, twice a day; BTK, Bruton tyrosine kinase; CR, complete response; CXCR4, C-X-C chemokine receptor type 4 gene; LOD, limit of detection; MUT, mutant; MYD88, myeloid differentiation primary response 88 gene; NCCN, National Comprehensive Cancer Network; NGS, next-generation sequencing; PCR, polymerase chain reaction; PD, progressive disease; PFS, progression-free survival; QD, once a day; R/R, relapsed/refractory; VGPR, very good partial response; WT, wild type; WM, Waldenström macroglobulinemia. 1. Owen et al. Br J Haematol 2013;160(2):171-176


Presented at the 11th International Workshop on Waldenström Macroglobulinemia on October 27-30, 2022 Session XI: Plenary Session II – Presentation WM041

High Rates of *TP53^{MUT}* and *TERT^{MUT}* Were Found in ASPEN Study^a and More Often Detected in Patients With *MYD88^{MUT}* or *CXCR4^{MUT}*

and the CXCR4^{FS} rate is 19.4% (19/98) vs 7.6%(7/92), respectively

Mutation rate, % (n)	<i>МҮD88</i> ^{wт} (n=20)	<i>МҮD88</i> ^{м∪т} (n=190)	<i>СХСR4</i> ^{wт} (n=156)	<i>СХСR4</i> ^{м∪т} (n=54)	CXCR4 ^{FS} (n=27)	CXCR4 ^{NS} (n=27)
TP53	4 (20%)	48 (25.3%)	33 (21.2%) *	19 (35.2%) *	8 (29.6%)	11 (40.7%) *
TERT	0	19 (10%)	6 (3.9%) *	13 (24.1%) *	4 (14.8%) *	9 (33.3%) *
ARID1A	1 (5%)	31 (16.3%)	9 (5.8%) *	23 (42.6%) *	11 (40.7%) *	12 (44.4%) *

Bold text indicates >10% difference between MUT and WT in 210 NGS-evaluable patients with WM. "P value <0.05, based on Hisner's exact test, WT is the reference group

alncluding 190 patients with MYD88^{MUT} (98 treated by zanubrutinib), and 92 treated by ibrutinib) and 20 patients with MDY88^{WT} (all zanubrutinib), MYD88 status was assessed by a PCR-based assay which was used for patients' enrollment. CXCR4 status was evaluated by NGS. BOR, best overall response; CR, complete response; CXCR4, C-X-C chemokine receptor type 4 gene; FS, frameshift; INV, investigator; MR, minor response; MYD88, myeloid differentiation primary response 88 gene; NGS, next-generation sequencing; NS, nonsense; PD, progressive disease; PR, partial response; RR, relapsed/refractory; SD, stable disease; VGPR, very good partial response; TERT, telomerase reverse transcriptase gene; TN, treatment naïve; TP53, tumor protein P53 gene; WM, Waldenström macroglobulinemia; WT, wild type.

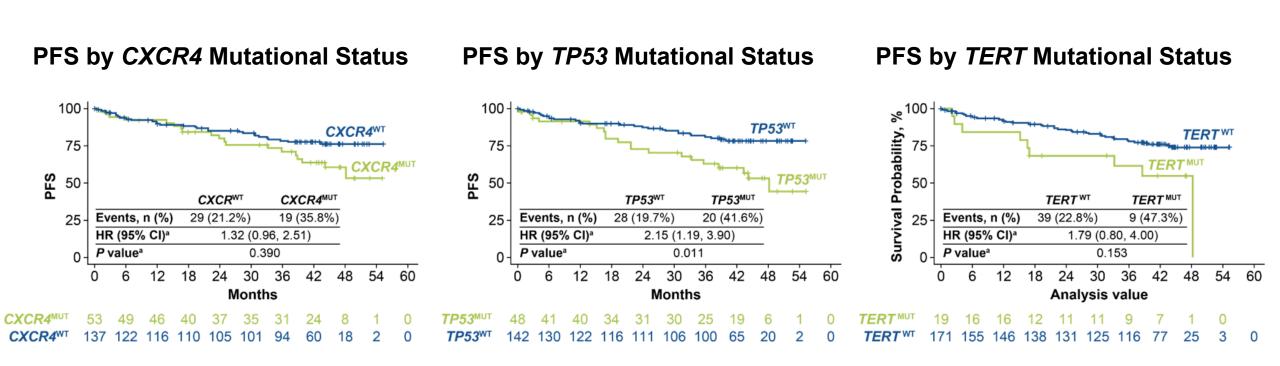
Presented at the 11th International Workshop on Waldenström Macroglobulinemia on October 27-30, 2022 Session XI: Plenary Session II – Presentation WM041

In Patients With *MYD88*^{MUT} WM^a, Those With *CXCR4*^{MUT}, *TP53*^{MUT}, *TERT*^{MUT} Trended Toward an Inferior Response to BTK Inhibitors^a

Response	<i>CXCR4</i> ^{w⊤}	<i>СХСR4</i> ^{м∪т}	<i>TP</i> 53 ^{w⊤}	<i>ТР53</i> ^{м∪т}	<i>TERT</i> ^{w⊤}	<i>TERT</i> ^{M∪T}
	(n=137)	(n=53)	(n=142)	(n=48)	(n=171)	(n=19)
VGPR or better, n (%)	51 (37.2)*	9 (17.0)*	48 (33.8)	12 (25.0)	58 (33.9)	2 (10.5)
Major Response, n (%)	115 (83.9)	39 (73.6)	119 (83.8)	35 (72.9)	143 (83.6)	11 (57.9)
Median time to VGPR or better (min, max), months	8.4	11.1	9.3	11.1	9.3	34.1
	(1.9, 50.0)	(2.8, 46.0)	(1.9, 50.0)	(3.0, 46.9)	(1.9, 50.0)	(22.2, 46.0)
Median time to Major Response (min, max), months	2.8	4.6	2.9	2.9	2.8	5.6
	(0.9, 49.8)	(1.0, 49.8)	(0.9, 49.8)	(1.0, 13.8)	(0.9, 49.8)	(1.8, 22.2)

- Responses in patients with CXCR4^{MUT}, TP53^{MUT}, and TERT^{MUT} trended toward lower VGPR+CR rate or Major Response rate and longer median time to response than patients with the respective WT alleles
- Responses in patients with ARID1A^{MUT} show less difference (<10%) regarding VGPR+CR rate or MRR than those with ARID1A^{WT}, suggesting limited clinical impact

Data cutoff: October 31, 2021.


Bold text indicates >10% difference between MUT and WT.

*P value <0.05, based on a logistic regression model with CXCR4 (WT, MUT), TERT (WT, MUT), and TP53 (WT, MUT) mutational status as covariates. WT is the reference group.

^aMYD88 status was assessed by PCR-based assay, with a total of 190 patients with MYD88^{MUT} WM.

ARID1A, AT-rich interactive domain-containing protein 1A gene; C-X-C chemokine receptor type 4 gene; CR, complete response; MUT, mutant; MYD88, myeloid differentiation primary response 88 gene; PCR, polymerase chain reaction; TERT, telomerase reverse transcriptase gene; TP53, tumor protein P53 gene; VGPR, very good partial response; WM, Waldenström macroglobulinemia; WT, wild type.

PFS in Patients With *CXCR4^{MUT}*, *TP53^{MUT}*, and *TERT^{MUT}* Trended Toward Less Favorable Outcome Than Patients With the Respective WT Alleles

Data cutoff: October 31, 2021.

Pooled analysis of patients with MYD88^{MUT} WM from cohort 1 including 98 treated by zanubrutinib and 92 treated by ibrutinib.

^aHR and *P* values were estimated using a Cox regression model with *CXCR4* (WT, MUT), *TP53* (WT, MUT), and *TERT* (WT, MUT) mutational statuses as covariates. WT is the reference group.

CXCR4, C-X-C chemokine receptor type 4 gene; HR, hazard ratio; MUT, mutant; PFS, progression-free survival; TERT, telomerase reverse transcriptase gene; TP53, tumor protein P53 gene; WM, Waldenström macroglobulinemia; WT, wild type.

Presented at the 11th International Workshop on Waldenström Macroglobulinemia on October 27-30, 2022 Session XI: Plenary Session II – Presentation WM041

Zanubrutinib Showed Deeper, Faster Responses and Favorable PFS vs Ibrutinib in WM With CXCR4^{NS} and CXCR4^{FS} Mutations^a

	Patients with <i>MYD88^{MUT}</i> treated with ibrutinib				ents with <i>MYD88</i> ^{M∪T} anubrutinib		
	<i>СХСR4</i> ^{w⊤} (n=72)	CXCR4 ^{FS} (n=7)	<i>CXCR4</i> ^{№S} (n=13)	<i>CXCR4</i> ^{w⊤} (n=65)	<i>CXCR4</i> ^{FS} (n=19)	CXCR4 ^{NS} (n=14)	
VGPR or better, n (%)	22 (30.6)	0	2 (15.4)	29 (44.6)	5 (26.3)	2 (14.3)	
Major Response, n (%)	61 (84.7)	6 (85.7)	7 (53.8)	54 (83.1)	14 (73.7)	12 (85.7)	
Median time to VGPR or better (min, max), months	11.3 (2.0, 49.9)	-	31.3 (16.6, 46.0)	6.5 (1.9, 42.0)	11.1 (2.8, 26.0)	10.3 (9.4, 11.1)	
Median time to Major Response (min, max), months	2.8 (0.9, 49.8)	7.0 (2.8, 41.5)	2.9 (1.2, 13.6)	2.8 (0.9, 28.5)	2.9 (1.8, 49.8)	4.1 (1.0, 38.7)	
PFS Event-free rate at 42 months, % <i>P</i> value ^b	74.6 -	57.1 0.185	43.5 <mark>0.017</mark>	81.3 -	76.4 0.473	66.7 0.598	

 Compared to ibrutinib, zanubrutinib demonstrated a more favorable VGPR+CR rate in CXCR4^{FS} (P value^c = 0.06) and major response rate in CXCR4^{NS} (P value^c = 0.09)

Data cutoff: October 31, 2021.

Bold text indicates >10% difference between FS and WT or between NS and WT. Bold red text highlights P value < 0.05.

^aMutation determined by NGS and available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm. ^bEstimated using a Cox regression model with *CXCR4* (WT, FS, NS), *TERT* (WT, MUT), and *TP53* (WT, MUT) mutational status as covariates. WT is the reference group. ^cEstimated using a logistic regression model with treatment group, *TERT* (WT, MUT) and *TP53* (WT, MUT) mutational status as covariates within the respective subgroups. *CXCR4*, C-X-C chemokine receptor type 4 gene; CR, complete response; FS, frameshift; MUT, mutant; *MYD88*, myeloid differentiation primary response 88 gene; NGS, next-generation sequencing; NS, nonsense; PFS, progression-free survival; *TERT*, telomerase reverse transcriptase gene; *TP53*, tumor protein P53 gene; VGPR, very good partial response; WM, Waldenström macroglobulinemia; WT, wild type.

Zanubrutinib Showed Deeper, Faster Responses and Favorable PFS vs Ibrutinib in WM With *TP53*^{MUT,a}

		th <i>MYD88</i> ^{MU⊤} th ibrutinib	Patients with <i>MYD88^{MUT}</i> treated with zanubrutinib		
Response	<i>TP53</i> ^{w⊤} (n=70)	<i>TP53</i> ^{MUT} (n=22)	<i>TP53^{w⊤}</i> (n=72)	<i>TP53</i> ^{м∪⊤} (n=26)	
VGPR or better, n (%)	21 (30.0)	3 (13.6)*	27 (37.5)	9 (34.6) [*]	
Major Response, n (%)	60 (85.7)*	14 (63.6)*	59 (81.9)	21 (80.8)	
Median time to VGPR or better	11.4	24.9	6.5	11.1	
(min, max), months	(2.0, 49.9)	(5.6, 46.9)	(1.9, 42.0)	(3.0, 26.0)	
Median time to Major Response	2.9	3.0	2.8	2.8	
(min, max), months	(0.9, 49.8)	(1.0, 13.8)	(0.9, 49.8)	(1.0, 5.6)	
PFS					
Event-free rate at 42 months, %	72.1	57.9	84.6	62.0	
<i>P</i> value ^b	-	0.027	-	0.120	

 Compared to ibrutinib, zanubrutinib demonstrated a more favorable VGPR+CR rate (*P* value^c < 0.05) and major response rate (*P* value^c = 0.11) in *TP53*^{MUT}

Data cutoff: October 31, 2021.

Bold text indicates >10% difference between MUT and WT. **Bold red** text highlights P value < 0.05.

*P value <0.05, based on a logistic regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and TERT (WT, MUT) statuses as covariates. WT is the reference group.

^aMutation determined by NGS and available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm. ^bEstimated using a Cox regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and *TERT* (WT, MUT) mutational status as covariates. WT is the reference group. ^cEstimated using a logistic regression model with treatment group, *TERT* (WT, MUT) and *CXCR4* (WT, FS, NS) mutational status as covariates within the respective subgroups(† P value <0.05). MUT, mutant; *MYD88*, myeloid differentiation primary response 88 gene; NGS, next-generation sequencing; PFS, progression-free survival; *TP53*, tumor protein P53 gene; VGPR, very good partial response; WT, wild type.

TERT^{MUT, a} May be a New Risk Factor for BTKi therapy

		th <i>MYD88^{M∪T}</i> th ibrutinib	Patients with <i>MYD88^{MUT}</i> treated with zanubrutinib		
Response	<i>TERT</i> ^{w⊤} (n=83)	<i>TERT</i> ^{MUT} (n=9)	<i>TERT</i> ^{₩™} (n=88)	<i>TERT</i> ^{MU™} (n=10)	
VGPR or better, n (%)	23 (27.7)	1 (11.1)	35 (39.8)	1 (10.0)	
Major Response, n (%)	70 (84.3)*	4 (44.4)*	73 (83.0)	7 (70.0)	
Median time to VGPR or better (min, max), months	11.4 (2.0, 49.9)	46.0 (46.0, 46.0)	6.7 (1.9, 42.0)	22.2 (22.2, 22.2)	
Median time to Major Response (min, max), months	2.8 (0.9, 49.8)	10.3 (2.9, 13.8)	2.8 (0.9, 49.8)	3.7 (1.8, 22.2)	
PFS					
Event-free rate at 42 m, %	68.4	74.0	83.4	37.5	
P value ^b		0.304		0.001	

Data cutoff: October 31, 2021.

Bold text indicates >10% difference between MUT and WT. Bold red text highlights P value < 0.05.

*P value <0.05, based on a logistic regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and TERT (WT, MUT) statuses as covariates. WT is the reference group.

^aMutation determined by NGS and available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm. ^bEstimated using a Cox regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and TERT (WT, MUT) mutational status as covariates. WT is the reference group.

MUT, mutant; MYD88, myeloid differentiation primary response 88 gene; NGS, next-generation sequencing; PFS, progression-free survival; TERT, telomerase reverse transcriptase gene; VGPR, very good partial response; WT, wild type.

- The ASPEN study detected high mutational rates of TP53 and TERT in addition to CXCR4 and ARID1A in patients with MYD88^{MUT} WM
- Patients with CXCR4^{NS} showed reduced VGPR, MRR and PFS than those with CXCR4^{WT} in the ibrutinib arm; for zanubrutinib, only VGPR rate was reduced.
- Patients with TP53^{MUT} had reduced VGPR, MRR and PFS in the ibrutinib arm; no significant differences currently exist in the zanubrutinib arm. The VGPR rate for TP53^{MUT} was significantly higher in zanubrutinib than ibrutinib arm.
- *TERT*^{MUT} may be a novel risk factor for patients receiving BTK inhibitor therapy.

ARID1A, AT-rich interactive domain-containing protein 1A gene; BTK, Bruton tyrosine kinase; CXCR4, C-X-C chemokine receptor type 4 gene; FS, frameshift; MRR, major response rate; MUT, mutant; MYD88, myeloid differentiation primary response 88 gene; NS, non-sense; PFS, progression-free survival; TERT, telomerase reverse transcriptase gene; TP53, tumor protein P53 gene; VGPR, very good partial response; WT, wild type; WM, Waldenström macroglobulinemia.

ACKNOWLEDGMENTS

- We would like to thank the investigators, site support staff and especially the patients for participating in this study
- This study was sponsored by BeiGene. Editorial support was provided by Bio Connections LLC and funded by BeiGene

Presenting Author: Constantine S. Tam, MD, email: constantine.tam@monash.edu

Copies of this presentation are for personal use only and may not be reproduced without permission from IWWM-11 and the author of this presentation.