UPDATED RESULTS OF THE ASPEN TRIAL FROM A COHORT OF PATIENTS WITH MYD88 WILD-TYPE WALDENSTRÖM MACROGLOBULINEMIA

Meletios Dimopoulos, MD¹; Ramon Garcia Sanz, MD, PhD²; Hui-Peng Lee, MBChB, FRACP, FRCPA³; Marek Trneny, MD, CSc⁴; Marzia Varettoni, MD⁵; Stephen Opat, MBBS, FRACP, FRCPA^{6,7}; Shirley D'Sa, MD, MRCP, FRCPath⁸; Roger G. Owen, MD⁹; Gavin Cull, MB, BS, FRACP, FRCPA^{10,11}; Stephen Mulligan, MBBS, PhD, FRACP, FRCPA¹²; Jaroslaw Czyz, MD, PhD^{13,14}; Jorge Castillo, MD^{15,16}; Marina Motta, MD¹⁷; Tanya Siddiqi, MD¹⁸; Mercedes Gironella Mesa, MD¹⁹; Miquel Granell Gorrochategui, MD²⁰; Dipti Talaulikar, PhD, FRACP, FRCPA, MBBS²¹; Pier Luigi Zinzani, MD, PhD²⁴; Albert Oriol, MD²⁵; Janusz Kloczko, MD²⁶; Alessandra Tedeschi, MD²⁷; Christian Buske, MD²⁸; Veronique Leblond, MD²⁹; Wai Y. Chan, PhD³⁰; Jingjing Schneider, PhD³⁰; Jane Huang, MD³⁰; Jane Huang, MD³⁰; and Constantine S. Tam, MBBS, MD, FRACP, FRCPA³¹⁻³⁴

¹National and Kapodistrian University of Athens, Athens, Greece; ²Hospital Universitario de Salamanca, Spain; ³Flinders Medical Centre, Adelaide, South Australia; ⁴Vseobecna fakultni nemocnice v Praze, Prague, Czech Republic; ⁵Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ⁶Monash Health, Clayton, Victoria, Australia; ⁷Monash University, Clayton, Victoria, Australia; ⁸University College London Hospital, Perth, Western Australia; Australia; ¹⁰Sir Charles Gairdner Hospital, Perth, Western Australia; Perth, Western Australia; ¹⁰Sir Charles Gairdner Hospital, ¹⁰Sir Charles Gairdner Hospital, ¹⁰Sir Charles Gairdner Hospital, ¹⁰Sir Shore Hospital, Sydney, New South Wales, Australia; ¹³Szpital Uniwersytecki nr 2 im dr. Jana Biziela, Kujawsko-pomorskie, Bydgoszcz, Poland; ¹⁴Department of Hematology, Collegium Medicum in Bydgoszcz, Poland; ¹⁴Department of Hematology, Collegium Medicum in Bydgoszcz, Poland; ¹⁴Department of Hematology, Collegium Medical School, Boston, MA, USA; ¹⁷AO Spedali Civili di Brescia, Lombardia, Italy; ¹⁸City of Hope National Medical Center, Duarte, CA, USA; ¹⁹Hospital University, Canberra, ACT, Australia; ²²Institute of Hematology "Seràgnoli" University of Bologna, Bologna, Italy; ²³Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ²⁴Department of Hematology and Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland; ²⁵Institut Català d'Oncologia-Hospital Universitari Germans Trias i Pujol, Barcelona, Spain; ²⁶Uniwersytecki Szpital Kliniczny w Bialymstoku, Podlaskie, Poland; ²⁷ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ²⁸CCC Ulm - Universitätsklinikum Ulm, Baden-Württemberg, Germany; ²⁹Sorbonne Universitätsklinikum Ulm, Ulm, Baden-Württemberg, Germany; ²⁰Sorbonne Universitätsklinikum Ulm, Ulm, Baden-Württemberg, Germany; ²⁰Sorbonn ³²St Vincent's Hospital, Fitzroy, Victoria, Australia; ³³University of Melbourne, Parkville, Victoria, Australia; and ³⁴Royal Melbourne Hospital, Parkville, Victoria, Australia

INTRODUCTION

- Bruton tyrosine kinase (BTK) plays a critical role in B-cell receptor signaling, which mediates B-cell proliferation, migration, and adhesion¹⁻³
- First-generation BTK inhibitor ibrutinib has shown activity in Waldenström macroglobulinemia (WM) and has become a standard of care⁴
 - However, lower response rates,⁵ no major responses,^{5,6} and shorter survival⁷ have been reported in patients (pts) who lack MYD88^{L265P} or other activating mutations (MYD88^{WT})

Exploratory End Points for Cohort 2

- Responses were assessed monthly by immunoglobulin M (IgM) with extramedullary disease assessment every 3 months, according to response criteria in the National Comprehensive Cancer Network WM guidelines¹⁵ and modified Owen criteria¹⁶ as assessed by the independent review committee
- Efficacy: response rates (overall and major response rate), duration of response, progression-free survival, and overall survival; safety assessed according to National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03

Efficacy (n=26)

- Major response rate of 50.0% including 26.9% with VGPR (**Figure 6**)
- Median time to first major response (partial response or better, requiring reduction in extramedullary disease if present at baseline) was 2.9 mo (range, 1.9-16.1; Figure 7)
- IgM complete response (requiring normal IgM and immunofixation negative) was achieved in 1 pt
- Median progression-free and overall survival were not yet reached (**Figure 8**)

Figure 6. Best Responses by IRC in Patients With *MYD88^{wt}* WM

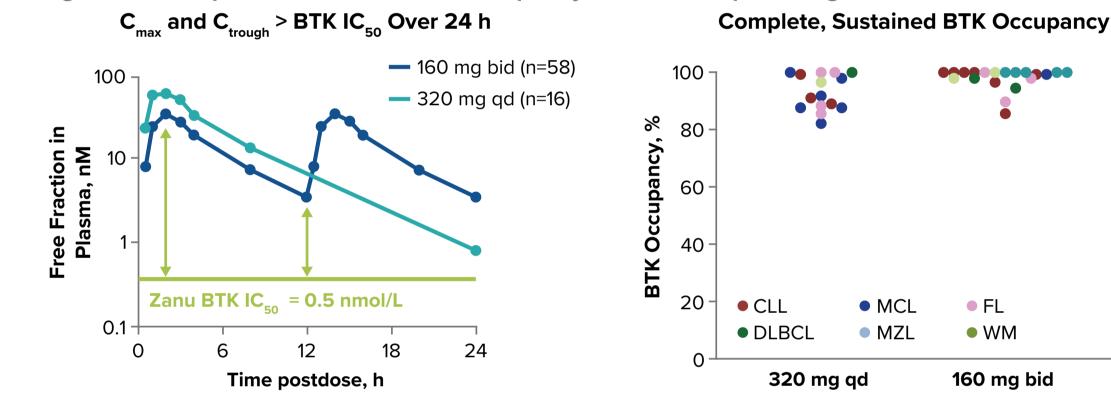

- Zanubrutinib is a next-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target inhibition of TEC- and EGFR-family kinases (Figure 1)
 - Potent, selective, and irreversible⁸
 - Equipotent against BTK compared with ibrutinib; higher selectivity vs EGFR, ITK, JAK3, HER2 and TEC⁹
 - Advantageous pharmacokinetic/pharmacodynamic properties: complete and sustained BTK occupancy in peripheral blood mononuclear cells and lymph nodes⁸
- Favorable drug-drug interaction properties: can be co-administered with strong/moderate CYP3A inhibitors at a reduced dose, proton pump inhibitors, acid-reducing agents, and anti-thrombotic agents^{10,11}

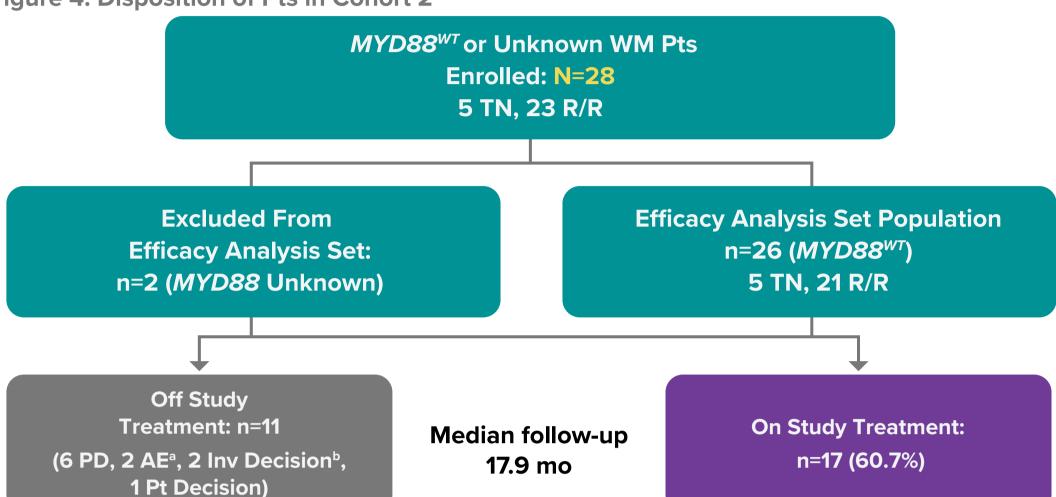
Figure 1a. Zanubrutinib: A Potent and Selective BTK Inhibitor^{8,9}

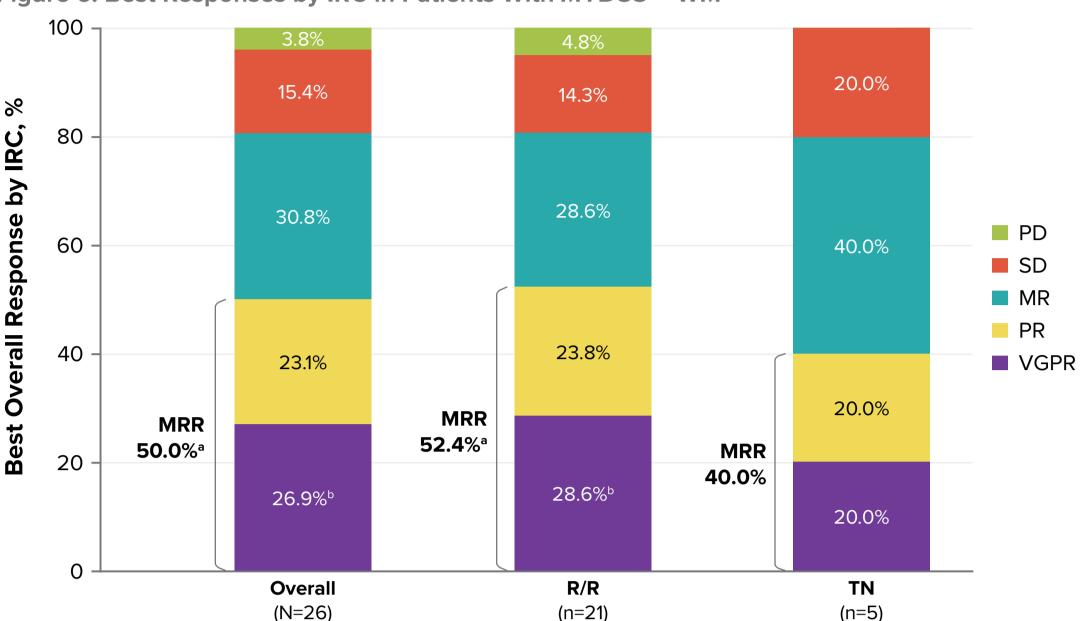
	Targets	Assays	Zanubrutinib IC ₅₀ (nM)	Ibrutinib IC ₅₀ (nM)	Ratio (Zanubrutinib:Ibrutinib)
ON TARGET	ВТК	BTK-pY223 Cellular Assay	1.8	3.5	0.5
		Rec-1 Proliferation	0.36	0.34	1.1
		BTK Occupation Cellular Assay	2.2	2.3	1
		BTK Biochemical Assay	0.22	0.2	1.1

OFF TARGET	EGFR	p-EGFR HTRF Cellular Assay	606	101	6
		A431 Proliferation	3210	323	9.9
	ITK	ITK Occupancy Cellular Assay	3265	189	17
		p-PLCγ1 Cellular Assay	3433	77	45
		IL-2 Production Cellular Assay	2536	260	9.8
		ITK Biochemical Assay	30	0.9	33
	JAK3	JAK3 Biochemical Assay	200	3.9	51
	HER2	HER2 Biochemical Assay	661	9.4	70
	TEC	TEC Biochemical Assay	1.9	0.8	2.4

Figure 1b. Complete, Sustained BTK Occupancy With bid or qd Dosing^{8,9}

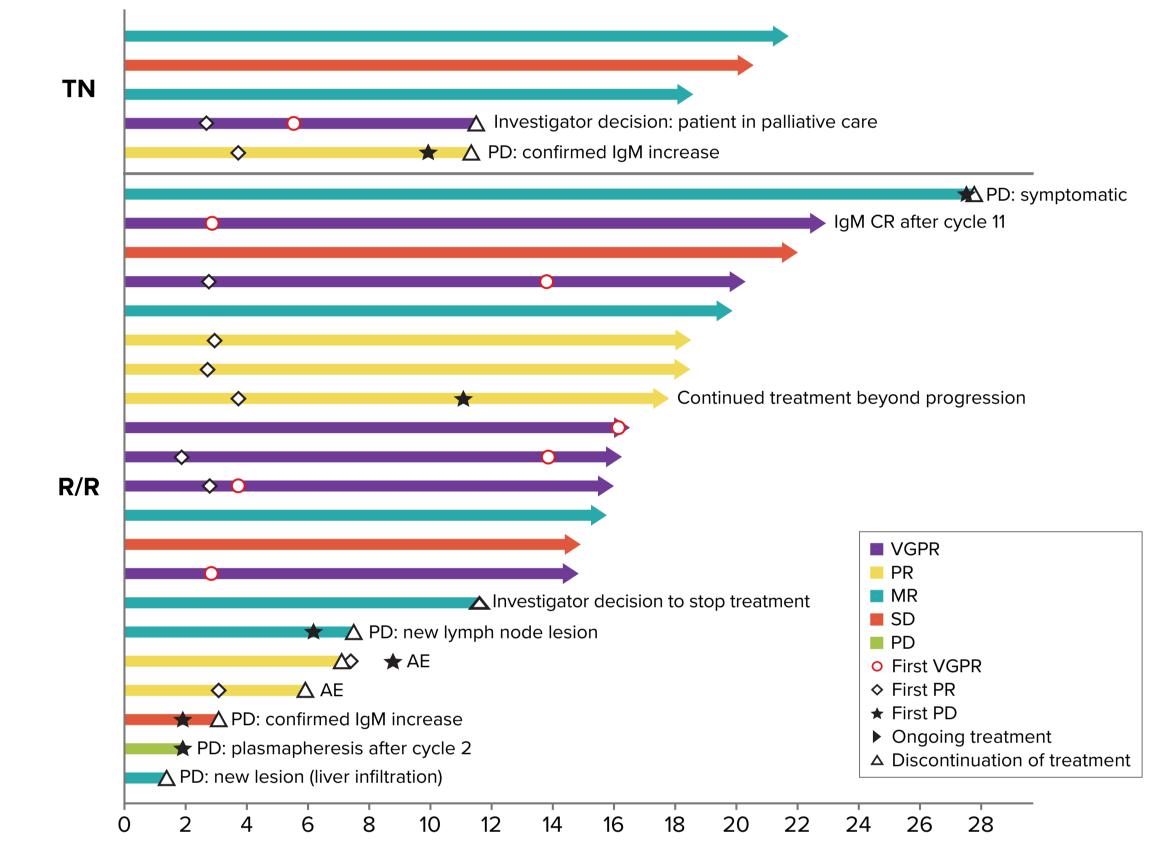
RESULTS


Zanubrutinib (BGB-3111)


 $H_2 N$

• In total, 28 pts (n=26 *MYD88^{WT}*; n=2 *MYD88* mutation status unknown) were enrolled into cohort 2

• The safety analysis set includes all 28 pts, and the efficacy analysis set includes 26 MYD88^{wt} pts, with a median follow-up of 17.9 months (range, 2.3-27.8; Figure 4 and Table 1)


Figure 4. Disposition of Pts in Cohort 2

CR, complete response; IgM, immunoglobulin M; IRC, independent review committee; MR, minor response; MRR, major response rate (≥PR); PD, progressive disease; PR, partial response; pt, patient; R/R, relapsed/refractory; SD, stable disease; TN, treatment-naïve; VGPR, very good PR. ^aIncluding pts confirmed by next-generation sequencing of no other activating MYD88 mutations. ^bOne pt achieved IgM complete response (normalized IgM and negative immunofixation since cycle 11, with bulky extramedullary disease improving).

Figure 7. Responses Over Time on Treatment

Data cutoff date: 31 Aug, 2019.

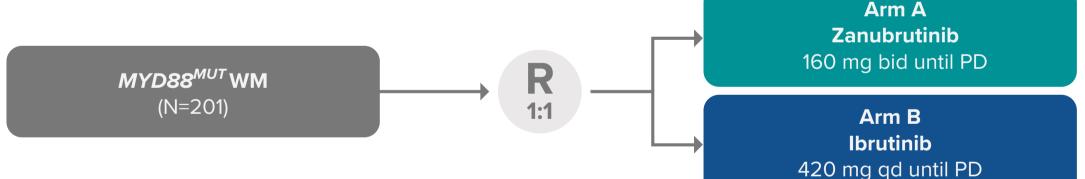
AE, adverse event; F/U, follow-up; Inv, investigator; PD, progressive disease; pt, patient. ^aGrade 4 subdural hemorrhage; grade 3 diarrhea. ^bInvestigator decided no further treatment needed (n=1); pt discharged to hospice for palliative care (n=1).

Table 1. Pt and Disease Characteristics

Characteristic	Total (N=28)
Age, median (range), y	70.1 (39-87)
>65 years, n (%)	19 (67.9)
>75 years, n (%)	12 (42.9)
Sex, n (%)	
Men	14 (50)
Women	14 (50)
IPSSWM, n (%)	
Low	5 (17.9)
Intermediate	11 (39.3)
High	12 (42.9)
Prior treatment status	
Treatment-naïve, n (%)	5 (17.9)
R/R, n (%)	23 (82.1)
No. of prior therapies for R/R pts, median (range)	1 (1-5)
Extramedullary disease present at baseline by IRC, n (%)	21 (75.0)

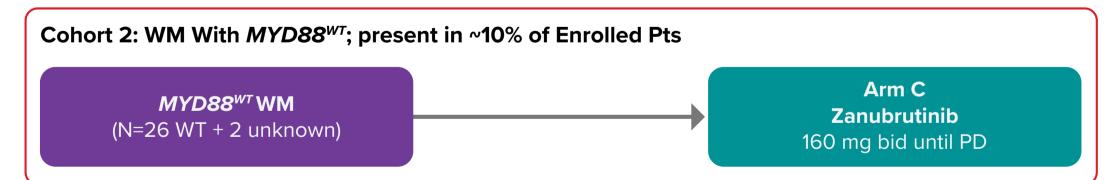
bid, twice daily; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; C_{max}, maximum concentration; C_{trough}, trough concentration; DLBCL, diffuse large B-cell lymphoma; EGFR, epidermal growth factor receptor; FL, follicular lymphoma; HER2, human epidermal growth factor receptor 2; HTRF, homogeneous time resolved fluorescence; IC₅₀, half maximal inhibitory concentration; ITK, IL-2–inducible T-cell kinase; JAK3, Janus-associated kinase 3; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PLC, phospholipase C; qd: once daily; WM, Waldenström macroglobulinemia; Zanu, zanubrutinib.

OBJECTIVE


• To assess the safety and efficacy of zanubrutinib in WM pts with MYD88^{WT} from an exploratory cohort of the ongoing phase 3 study of zanubrutinib vs ibrutinib in pts with WM (ASPEN; NCT03053440)

METHODS

• ASPEN is an open-label, multicenter, randomized, phase 3 study of zanubrutinib vs ibrutinib in pts with WM (Figure 2)


Figure 2. Phase 3 ASPEN Trial Design

Stratification factors:

- CXCR4 mutational status (CXCR4^{WHIM} vs CXCR4^{WT} vs missing)
- No. of prior lines of therapy (0 vs 1-3 vs > 3)

EUDRACT 2016-002980-33: NCT03053440. bid, twice daily; PD, progressive disease; pt, patient; qd, once daily; R/R, relapsed/refractory; TN, treatment-naïve.

^aTN must be unsuitable for standard chemoimmunotherapy.

MYD88 ^{wT} /CXCR4 unknown	2 (7.1)
MYD88 unknown/CXCR4 unknown	2 (7.1)
Hemoglobin ≤110 g/L, n(%)	15 (53.6)

IPSSWM, International Prognostic Scoring System Waldenström macroglobulinemia; pt, patient; R/R, relapsed/refractory; IRC, independent review committee

Safety (N=28)

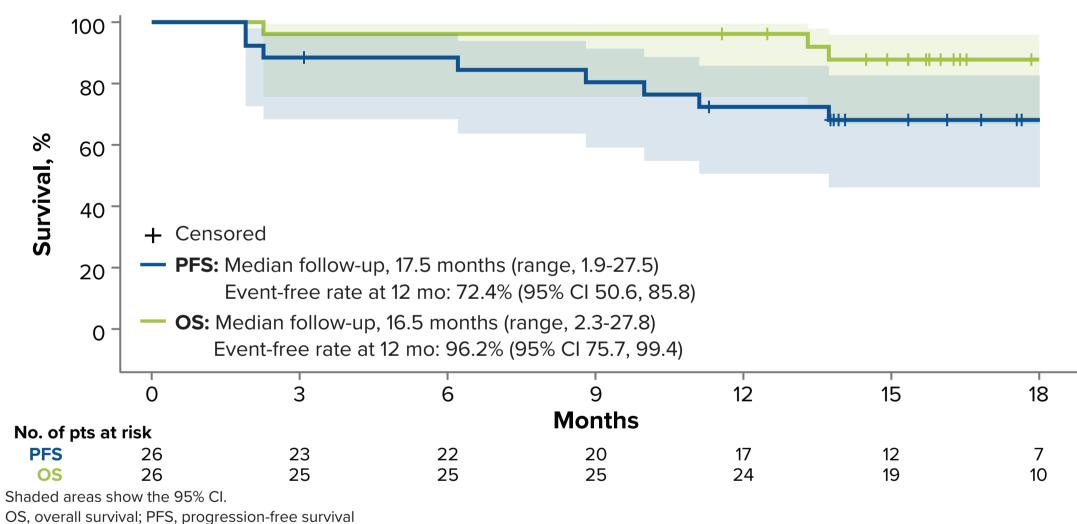
Table 2. AE Overview

Treatment Emergent AE	n (%)
Pts with ≥1 AE grade ≥3	18 (64.3)
Pts with ≥1 serious AE	11 (39.3)
AE leading to death	0
AE leading to treatment discontinuation	2ª (7.1)
AE leading to dose reduction	2 ^b (7.1)

AE, adverse event; pt, patient; SAE, serious adverse event. ^aGrade 4 subdural hemorrhage (related) and grade 3 diarrhea (related). ^bGrade 3 pneumonitis resolved and followed by grade 2 pneumonia (n=1); grade 1 diarrhea (n=1).

No treatment-emergent AEs leading to death (Table 2)

- 2 Pts discontinued because of AEs
 - Grade 4 subdural hemorrhage
 - Grade 3 diarrhea
- Major hemorrhage occurred in 2 pts (**Table 3**)
 - Gastric ulcer hemorrhage
- Periorbital hematoma, subdural hematoma, and subdural hemorrhage; treatment was permanently discontinued per protocol
- Atrial fibrillation/flutter occurred in 1 pt (grade 1)
- Most common adverse events (AEs; in >15% pts) were diarrhea, anemia, contusion, pyrexia, upper respiratory tract infection, respiratory tract infection, and cough (Figure 5)


Table 3. AE Categories of Interest (BTKi Class AEs)

······································		
AE Categories (Pooled Terms), n (%)	All Grade	Grade ≥3
Atrial fibrillation/flutter	1 (3.6)	0
Diarrhea (PT)	8 (28.6)	2 (7.1)
Hemorrhage Major hemorrhage ^a	11 (39.3) 2 (7.1)	2 (7.1) 2 (7.1)
Hypertension	3 (10.7)	3 (10.7)
Neutropenia ^b	5 (17.9)	3 (10.7)
Infection	21 (75.0)	8 (28.6)
Second maliananay	4 (14 2)	0

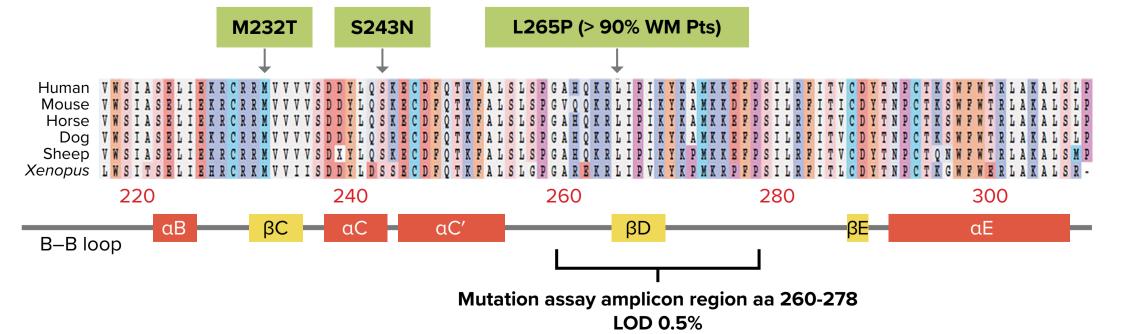
Treatment, mo

Note: color of bars represents the best response for each patient. AE, adverse event; MR, minor response; PD, progressive disease; PR, partial response; R/R, relapsed/refractory; SD, stable disease; TN, treatment-naïve; VGPR, very good PR.

Figure 8. Progression-Free and Overall Survival

CONCLUSIONS

- Largest cohort of pts with WM with confirmed MYD88^{WT} (n=26) studied in terms of safety and efficacy of BTKi treatment
- Single-agent zanubrutinib resulted in major responses (including very good partial response)
 - Major response rate of 50.0% including 26.9% with very good partial response
 - IgM complete response achieved in 1 pt
 - Median time to first major response was 2.9 months (range, 1.9-16.1)
- Zanubrutinib was well tolerated
 - Discontinuation because of AEs occurred in 7.1% of pts (2/28)
 - Primary reason for discontinuation was progressive disease (3 of 6 within first 3 cycles)
- No fatal AEs reported
- Low incidences of atrial fibrillation

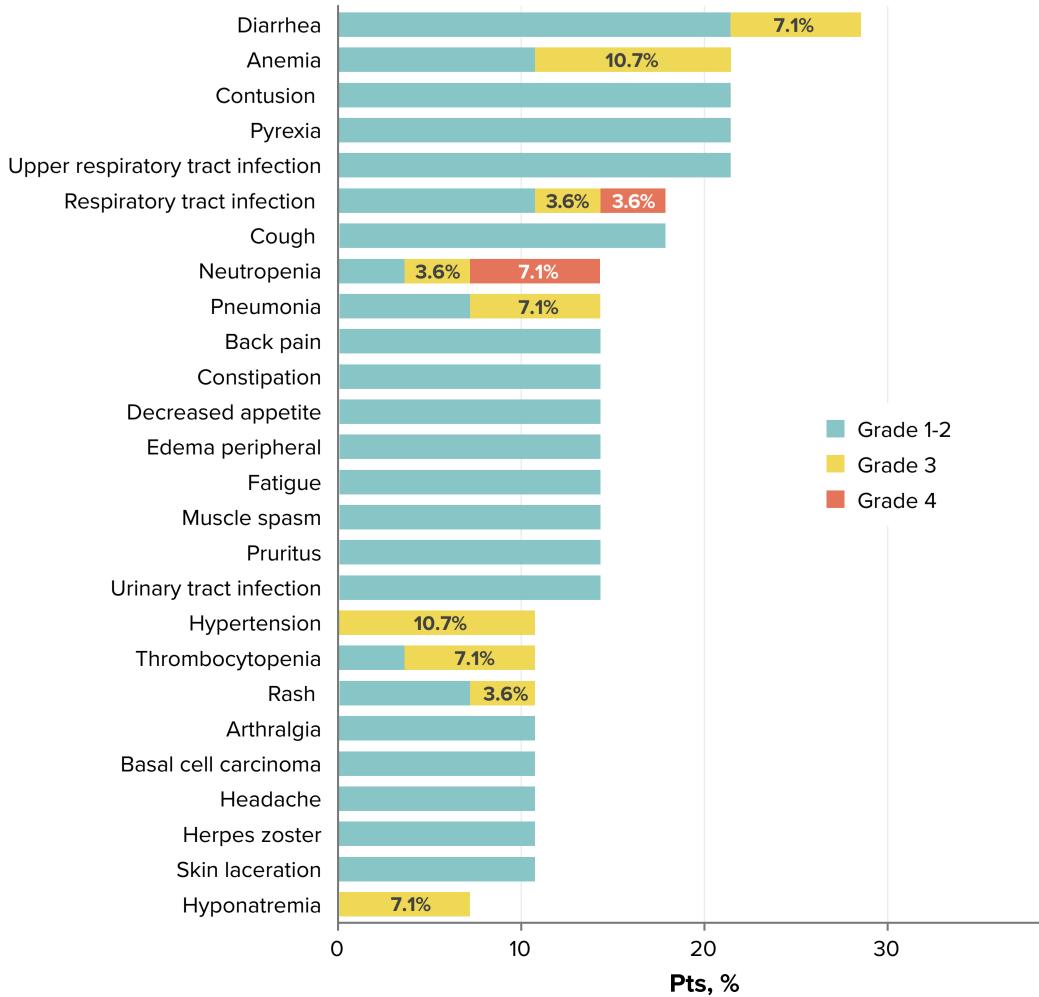

Eligibility

- Clinical and definitive histologic diagnosis of WM, with measurable disease (serum IgM >0.5 g/dL), and meeting ≥1 criterion for treatment according to consensus panel criteria from the Seventh International Workshop on WM¹²
- If treatment naïve, must be considered by treating physician unsuitable for standard chemoimmunotherapy regimens
- Eastern Cooperative Oncology Group performance status 0-2
- Absolute neutrophil count \geq 750/µL, platelets \geq 50000/µL (independent of growth factor/ transfusions)
- Adequate renal, hepatic, and coagulation function
- No significant cardiac disease, active central nervous system involvement, or prior BTK inhibitors

Cohort Assignment

- Bone marrow *MYD88* and *CXCR4* mutations were assessed centrally at study entry (NeoGenomics Laboratory, Aliso Viejo, CA, USA)¹³
- The MYD88 mutation assay used detects all mutations in the region encompassing amino acid Ala²⁶⁰-Pro²⁷⁸, which includes the predominant mutation in WM, *MYD88*^{L265P} (Figure 3)
- Pts were assigned to cohort 1 (*MYD88* mutated; randomized) or exploratory cohort 2 (*MYD88^{WT}* or *MYD88* unknown, nonrandomized) based on the central laboratory *MYD88* mutation assay results

Figure 3. MYD88-Activating Mutations in Pts With WM


- Detection in the MYD88 amplicon (Ala²⁶⁰-Pro²⁷⁸) by the NeoGenomics LDT assay includes a wild-type-allele–blocking approach (limit of detection [LOD], 0.5%)¹³ versus standard polymerase chain reaction/bidirectional Sanger sequencing assay used to detect CXCR4 mutations (LOD, 10%-15%)
- For $MYD88^{WT}$ pts with available samples (12 of 26), MYD88 mutations were also evaluated by next-generation sequencing (200×; LOD, 5%); no other activating mutations were detected

Adapted from Treon et al⁶ and Ngo et al¹⁴ LOD, limit of detection; pt, patient; WM, Waldenström macroglobulinemia.

AE, adverse event; BTKi, Bruton tyrosine kinase inhibitor; PT, preferred term. ^aDefined as any grade \geq 3 hemorrhage or any grade central nervous system hemorrhage: gastric ulcer hemorrhage; and 1 patient had periorbital hematoma, subdural hematoma, and subdural hemorrhage. ^bIncluding PT terms of neutropenia, neutrophil count decreased, febrile neutropenia, agranulocytosis, neutropenic infection, and neutropenic sepsis. ^cBasal cell carcinoma (n=3) and Queyrat erythroplasia (n=1).

Figure 5. Common AEs (Any Grade >10% or Grade ≥3 in >1 Pt), Regardless of Causality

AE, adverse event; pt, patient.

AE profile is consistent with cohort 1 finding in the ASPEN study

REFERENCES

- Rickert RC. Nat Rev Immunol. 2013;13:578-591
- 2. Choe H, Ruan J. Oncology (Williston Park). 2016;30:847-858.
- Yang G, et al. *Blood*. 2013;122:1222-1232.
- Treon SP, et al. J Clin Oncol. 2020;38:1198-1208. Treon SP, et al. N Engl J Med. 2015;372:1430-1440.
- Treon SP, et al. N Engl J Med. 2015;373;584-586.
- Palomba ML, et al. IWWM-9 Session 9, October 7, 2016 [abstr]. Tam CS, et al. *Blood*. 2019;134:851-859.
- 9. Tam CS, et al. ICML Session 7, June 16, 2017 [abstr].

CORRESPONDENCE

mdimop@med.uoa.gr

40

DISCLOSURES

MAD: Honoraria from Amgen, Takeda, BeiGene, Janssen, BMS. RGS: Honoraria from Janssen, Novartis, MSD, Astellas. Payment for expert testimony for IVS technologies. Travel expenses from Janssen, Novartis, MSD, Astellas. Receipt of equipment from Diagnostica Longwood. MT: Honoraria from Janssen, Gilead, BMS, Amgen, Abbvie, Roche, AstraZeneca, MorphoSys, Incyte, Portolla, Takeda. Travel expenses from Gilead, Takeda, BMS, Roche, Janssen, Abbvie. Consulting/Advisory Role for Janssen, BMS, Abbvie, Roche, MorphoSys, Incyte, Portolla, Takeda. SO: Honoraria from Roche, Janssen, Abbvie, Celgene, Takeda, Merck, Gilead, and AstraZeneca. Consulting/Advisory Role for Roche, Janssen, Abbvie, Celgene, Takeda, Merck, Gilead, Mundipharma, AstraZeneca, CSL. Research funding from BeiGene, Roche, Janssen, Abbvie, Takeda, Merck, Gilead, Epizyme, AstraZeneca. Travel expenses from Roche. SD: Honoraria from BeiGene, Janssen. Travel expenses from Janssen, Sanofi. Consulting/Advisory Role for BeiGene, Janssen, Sanofi. Leadership or fiduciary role for WMUK, Lymphoma Action. RGO: Honoraria from BeiGene, Janssen, Celgene, AstraZenca. Consulting/Advisory Role for BeiGene, Janssen. HL, MV, GC, MM, MGG, SM, JC, EA, SG, and JK: nothing to disclose. JC: Research Funding and/or Honoraria from Abbvie, BeiGene, Janssen, Pharmacyclics, Roche and TG Therapeutics. **TS:** Funding from BeiGene. Honoraria from Pharmacyclics, Janssen, AstraZeneca. Consulting/Advisory Role for AstraZeneca, BeiGene, Juno therapeutics, BMS, Celgene, Kite Pharma, Pharmacyclics. DT: Consulting/Advisory Role for Roche, EUSA Pharma, George Clinical. Research Funding/Speakers Bureau/Travel Expenses for/from Roche. MGM: Honoraria from Janssen, BMS, Amgen. Payment for expert testimony for GSK. Consulting/Advisory Role for Janssen, BMS, Amgen. PLZ: Honoraria from EUSA Pharma, Takeda, Merck, Roche, Abbvie. Consulting/Advisory Role for Takeda, EUSA Pharma, Roche, Merck, Abbvie. Speakers Bureau for EUSA Pharma, Merck, Takeda, Gilead. AO: Honoraria from Celgene/BMS, Sanofi, Janssen. Consulting/Advisory Role for Celgene/BMS, Sanofi, GSK. AT: Consulting/Advisory Role and Speakers Bureau for Abbvie, AstraZeneca, Janssen and BeiGene. CB: Consulting/Advisory Role for BeiGene, Roche, Janssen, Abbvie, Pfizer, Celltrion. Honoraria from BeiGene, Roche, Janssen, Abbvie, Pfizer, Celltrion. Leadership or Fiduciary Role for GLA, DGHO, ESMO. VL: Consulting Fees from AstraZeneca, Lilly, Abbvie. Honoraria from Roche, AstraZeneca, Amgen, BeiGene, Janssen, Abbvie. Advisory Board for AstraZeneca, BeiGene, Janssen, Abbvie. WYC: Employment, Stock or Other Ownership at BeiGene, JS: Employment, Stock or Other Ownership at BeiGene. AC: Employment, Stock or Other Ownership at BeiGene. JH: Employment, Stock or Other Ownership at BeiGene. CST: Honoraria from Janssen, Abbvie, BeiGene. Research funding from Janssen, Abbvie.

ACKNOWLEDGMENTS

We thank the investigators, site support staff, and especially the patients for participating in this study. This study was sponsored by BeiGene. Editorial support was provided by Peloton Advantage, LLC, an OPEN Health company, Parsippany, NJ, and funded by BeiGene.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from the authors of this poster. This QR code will take you to an external site.

- 10. Mu S, et al. Cancer Chemother Pharmacol. 2020;85:391-399.
- 11. BeiGene, data on file.
- 12. Dimopoulos M, et al. Blood. 2014;124:1404-1411. 13. Albitar A, et al. Int J Lab Hematol. 2016;38:133-140.
- 14. Ngo VN, et al. Nature. 2011;470:115-119.
- 15. National Comprehensive Cancer Network (NCCN). NCCN Guidelines: Lymphoplasmacytic Lymphoma/Waldenström's Macroglobulinemia. 2015; version 2.
- 16. Owen RG, et al. Br J Haematol. 2013;160:171-176.