ASPEN: Results of a Phase 3 Randomized Trial of Zanubrutinib Versus Ibrutinib for Patients With Waldenström Macroglobulinemia

Carlos Fernández de Larrea, MD, PhD¹; Meletios Dimopoulos, MD²; Stephen Opat, MBBS, FRACP, FRCPA³, Shirley D'Sa, MD, MRCP, FRCPath⁵; Wojciech Jurczak, MD, PhD⁶; Hui-Peng Lee, MBChB, FRACP, FRCPA³; Gavin Cull, MB, BS, FRACP, FRCPA8,9; Roger G. Owen, MD¹⁰; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹¹; Björn E. Wahlin, MD, PhD¹²; Ramon Garcia Sanz, MD, PhD¹³; Helen McCarthy, MBBS, PhD¹⁴; Stephen Mulligan, MBBS, PhD, FRACP, FRCPA¹⁵; Alessandra Tedeschi, MD¹⁶; Jorge Castillo, MD¹⊓,¹¹; Jaroslaw Czyz, MD, PhD¹¬,²⁰; David Belada, PhD²¹; Edward Libby, MD²²; Jeffrey Matous, MD²³; Marina Motta, MD²⁴; Tanya Siddiqi, MD²⁵; Monica Tani, MD²⁶; Marek Trneny, MD, CSc²¬; Monique Minnema, MD, PhD²¹; Christian Buske, MD²9; Veronique Leblond, MD³⁰; Wai Y. Chan, PhD³¹; Jingjing Schneider, PhD³¹; Aileen Cohen, MD, PhD³¹; Jane Huang, MD³¹; and Constantine S. Tam, MBBS, MD, FRACP, FRCPA³²,3³,3⁴,3⁵

¹Hospital Clinic de Barcelona, Barcelona, Spain; ²National and Kapodistrian University of Athens, Athens, Greece; ³Monash Health, Clayton, Victoria, Australia; ⁵University College London Hospital Foundation Trust, London, United Kingdom; ⁶Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland; ¬Flinders Medical Centre, Adelaide, South Australia; ³Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; ³University of Western Australia, Perth, Western Australia, Australia; ¹OSt James University Hospital, Leeds, United Kingdom; ¹¹Princess Alexandra Hospital and University of Queensland, Brisbane, Queensland, Australia; ¹²Karolinka University of Queensland, Spain; ¹²Royal Bournemouth and Christchurch Hospital, Bournemouth, United Kingdom; ¹³Royal North Shore Hospital, Sydney, New South Wales, Australia; ¹³ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹³Dana-Farber Cancer Institute, Boston, MA, USA; ¹³Harvard Medical School, Boston, MA, USA; ¹³Szpital Uniwersytecki nr 2 im dr. Jana Biziela, Bydgoszcz, Poland; ²¹Department of Hematology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland; ²¹FN Hradec Kralove, Hradec Kralove, Czech Republic; ²²University of Washington/Seattle Cancer Care Alliance - Clinical Research, Seattle, WA, USA; ²³Colorado Blood Cancer Institute, Denver, CO, USA; ²⁴AO Spedali Civili di Brescia, Lombardia, Italy; ²⁵City of Hope National Medical Center, Duarte, CA, USA; ²³Cospedale Civile S.Maria delle Croci, AUSL Ravenna, Ravenna, Italy; ²³Vscobecna fakultni nemocnice v Praze, Prague, Czech Republic; ²³University Medical Center Utrecht, Utrecht, Netherlands; ²³Institute of Experimental Cancer Research - Universitätsklinikum Ulm, Baden-Württemberg, Germany; ³³Sovbnonne University, Pitié Salpétrière Hospital, P

Disclosures

- Carlos Fernández de Larrea: Grants or contracts/Consulting Fees/Honoraria and Travel expenses from Janssen
- Meletios Dimopoulos: Honoraria from Amgen, Takeda, BeiGene, Janssen, BMS
- Stephen Opat: Honoraria from Roche, Janssen, Abbvie, Celgene, Takeda, Merck, Gilead, AstraZeneca. Consulting/Advisory Role for Roche, Janssen, Abbvie, Celgene, Takeda, Merck, Gilead, Mundipharma, AstraZeneca, CSL. Research funding from BeiGene, Roche, Janssen, Abbvie, Takeda, Merck, Gilead, Epizyme, AstraZeneca. Travel expenses from Roche
- Shirley D'Sa: Honoraria from BeiGene, Janssen. Travel expenses from Janssen, Sanofi. Consulting/Advisory Role for BeiGene, Janssen, Sanofi. Leadership or Fiduciary Role for WMUK, Lymphoma Action
- Wojciech Jurczak: Grants or contracts from BeiGene. Advisory Role for BeiGene
- Hui-Peng Lee: No conflicts of interest
- Gavin Cull: No conflicts of interest
- Roger G. Owen: Honoraria from BeiGene, Janssen, Celgene, AstraZeneca. Consulting/Advisory Role for BeiGene, Janssen
- Paula Marlton: Consulting fees from Janssen, Abbvie, Roche, Novartis, Astellas, AstraZeneca. Honoraria from Roche, Novartis. Advisory Role
 for BeiGene, Janssen, Abbvie, Roche, Novartis, Astellas, AstraZeneca. Travel expenses from Roche
- Björn E. Wahlin: Grants or contracts from Gilead. Honoraria from Roche. Advisory Role for Incyte
- Ramon Garcia Sanz: Honoraria from Janssen, Novartis, MSD, Astellas. Payment for expert testimony for IVS technologies. Travel expenses
 from Janssen, Novartis, MSD, Astellas. Receipt of equipment from Diagnostica Longwood
- Helen McCarthy: Honoraria from Janssen. Consulting/Advisory Role for AstraZeneca
- Stephen Mulligan: No conflicts of interest
- Alessandra Tedeschi: Consulting/Advisory Role and Speakers Bureau for Abbvie, AstraZeneca, Janssen, BeiGene
- Jorge Castillo: Research Funding and/or Honoraria from Abbvie, BeiGene, Janssen, Pharmacyclics, Roche, TG Therapeutics
- Jaroslaw Czyz: No conflicts of interest
- David Belada: No conflicts of interest

Disclosures (cont.)

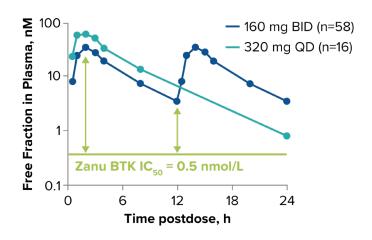
- Edward Libby: Consulting/Advisory Role for Akcea Therapeutics, Adaptive, Pharmacyclics
- Jeffrey Matous: Research support from BeiGene. Data Safety Monitoring Board or Advisory Board for BeiGene
- Marina Motta: No conflicts of interest
- Tanya Siddiqi: Funding from BeiGene. Honoraria from Pharmacyclics, Janssen, AstraZeneca. Consulting/Advisory Role for AstraZeneca, BeiGene, Juno therapeutics, BMS, Celgene, Kite Pharma, Pharmacyclics
- Monica Tani: No conflicts of interest
- Marek Trneny: Honoraria from Janssen, Gilead, BMS, Amgen, Abbvie, Roche, AstraZeneca, MorphoSys, Incyte, Portolla, Takeda. Travel
 expenses from Gilead, Takeda, BMS, Roche, Janssen, Abbvie. Consulting/Advisory Role for Janssen, BMS, Abbvie, Roche, MorphoSys,
 Incyte, Portolla, Takeda
- Monique Minnema: Consulting fees paid to institution from Jansen Cilag, Gilead, Alnylam, Takeda. Honoraria paid to institution from BMS,
 Roche. Travel expenses from Hospitality Celgene. Leadership or Fiduciary Role for HOVON working party
- Christian Buske: Consulting/Advisory Role for BeiGene, Roche, Janssen, Abbvie, Pfizer, Celltrion, Novartis, BMS, Regeneron. Honoraria from BeiGene, Roche, Janssen, Abbvie, Pfizer, Celltrion, BMS, Regeneron. Research Funding from Roche, Janssen, MSD, Celltrion, Amgen. Leadership or Fiduciary Role for GLA, DGHO, ESMO
- Veronique Leblond: Consulting Fees from AstraZeneca, Lilly, Abbvie. Honoraria from Roche, AstraZeneca, Amgen, BeiGene, Janssen, Abbvie.
 Advisory Board for AstraZeneca, BeiGene, Janssen, Abbvie
- Wai Y. Chan: Employment, Stock or Other Ownership at BeiGene
- Jingjing Schneider: Employment, Stock or Other Ownership at BeiGene
- Aileen Cohen: Employment, Stock or Other Ownership at BeiGene
- Jane Huang: Employment, Stock or Other Ownership at BeiGene
- Constantine S. Tam: Honoraria from Janssen, Abbvie, BeiGene. Research funding from Janssen, Abbvie

BTK Inhibition in WM

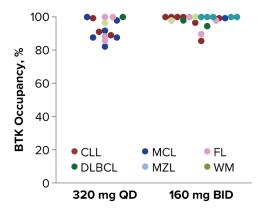
- BTK plays a critical role in B-cell receptor signaling; this pathway is constitutively activated in WM (>90% with MYD88 mutations), leading to malignant cell survival^{1,2}
- BTK inhibition is a new standard of care for WM³
- Zanubrutinib is a next-generation BTK inhibitor designed to maximize BTK occupancy and minimize
 off-target inhibition of TEC- and EGFR-family kinases
 - Potent, selective, irreversible
 - Equipotent against BTK compared with ibrutinib;
 fewer off-target effects due to high selectivity for binding EGFR, ITK, JAK3, HER2 and TEC⁴
 - Advantageous PK/pharmacodynamic properties:
 complete and sustained BTK occupancy in PBMC and lymph nodes⁵
 - Favorable drug-drug interaction properties: can be coadministered with strong/moderate CYP3A inhibitors at a reduced dose, proton pump inhibitors, acid-reducing agents, and antithrombotic agents^{6,7}

Zanubrutinib (BGB-3111)

^{1.} Rickert RC. *Nat Rev Immunol*. 2013;13:578-591. 2. Argyropoulos KV, et al. *Leukemia*. 2016;30:1116-1125. 3. Treon SP, et al. *J Clin Oncol*. 2020;38:1198-1208. 4. Guo Y, et al. *J Med Chem*. 2019;62:7923-7940. 5. Tam CS, et al. *Blood*. 2019;134:851-859. 6. Mu S, et al. *Cancer Chemother Pharmacol*. 2020;85:391-399. 7. Data on file.

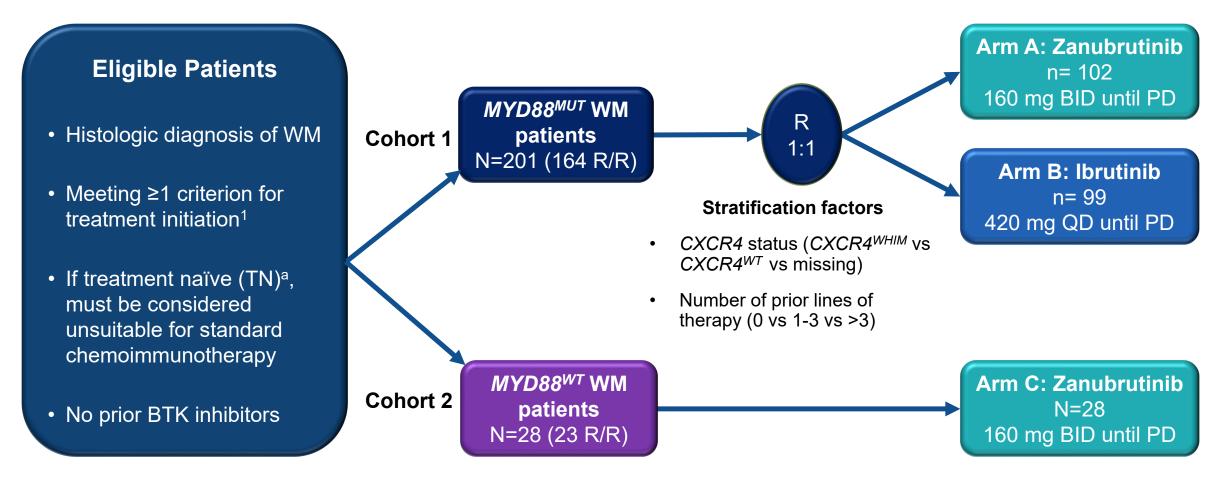

Zanubrutinib: A Potent and Selective BTK Inhibitor^{1,2}

Potent, selective, irreversible; minimize off-target inhibition


	Targets	Assays	Zanubrutinib IC ₅₀ (nM)	Ibrutinib IC ₅₀ (nM)	Ratio (Zanubrutinib:lbrutinib)
_	втк	BTK-pY223 Cellular Assay	1.8	3.5	0.5
ON TARGET		Rec-1 Proliferation	0.36	0.34	1.1
		BTK Occupation Cellular Assay	2.2	2.3	1
		BTK Biochemical Assay	0.22	0.2	1.1

	EGFR	p-EGFR HTRF Cellular Assay	606	101	6
	LOTA	A431 Proliferation	3210	323	9.9
	ітк	ITK Occupancy Cellular Assay	3265	189	17
SET		p-PLCγ1 Cellular Assay	3433	77	45
TARGET		IL-2 Production Cellular Assay	2536	260	9.8
OFF		ITK Biochemical Assay	30	0.9	33
	JAK3	JAK3 Biochemical Assay	200	3.9	51
	HER2	HER2 Biochemical Assay	661	9.4	70
	TEC	TEC Biochemical Assay	1.9	0.8	2.4

C_{max} and $C_{trough} > BTK IC_{50}$ Over 24 Hours


Complete, Sustained BTK Occupancy

Abbreviations: BID, twice daily; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; C_{max}, maximum concentration; C_{trough}, trough concentration; DLBCL, diffuse large B-cell lymphoma; EGFR, epidermal growth factor receptor; FL, follicular lymphoma; HER2, human epidermal growth factor receptor 2; HTRF, homogeneous time resolved fluorescence; IC₅₀, half maximal inhibitory concentration; ITK, IL-2–inducible T-cell kinase; JAK3, Janus-associated kinase 3; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PD, pharmacodynamic; PK, pharmacokinetic; PLC, phospholipase C; TEC, Tyrosine-protein kinase Tec; QD, once daily; WM, Waldenström macroglobulinemia; Zanu, zanubrutinib.

^{1.} Tam CS, et al. ICML Session 7, June 16, 2017 [abstr]. 2. Tam CS, et al. *Blood*. 2019;134:851-859.

ASPEN Study Design: Zanubrutinib vs Ibrutinib in MYD88^{MUT} WM

EUDRACT 2016-002980-33; NCT03053440

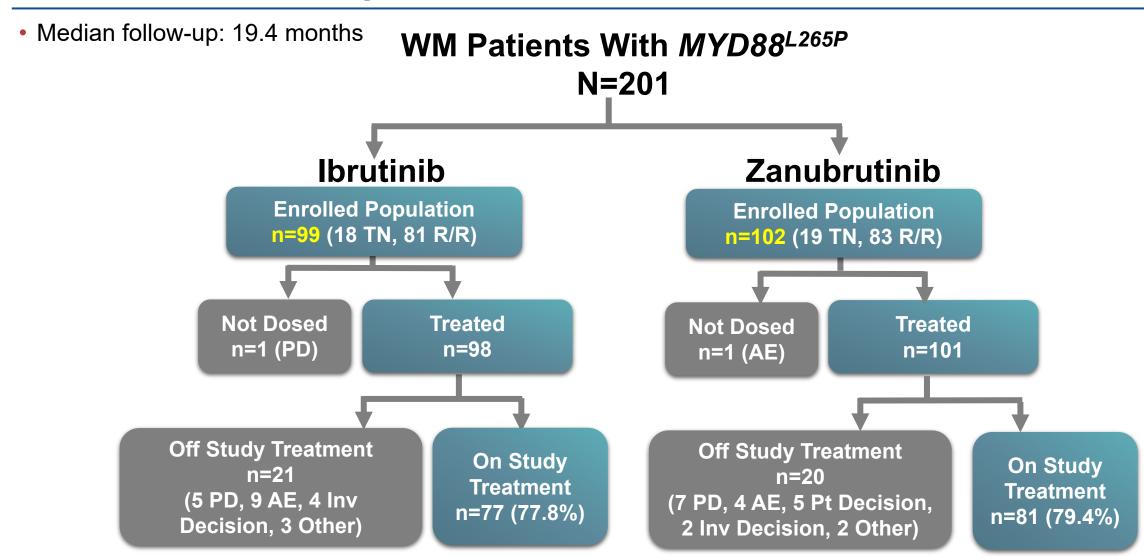
^aUp to 20% of the overall population.

^{1.} Dimopoulos MA, et al. *Blood*. 2014;124:1404-1411.

ASPEN Cohort 1 Study Objectives

Primary Objective

- Compare the efficacy of zanubrutinib vs ibrutinib
 - Primary end point was CR+VGPR rate


Secondary Objectives

- Further examine the efficacy, clinical benefit, and antilymphoma effects
- Evaluate safety and tolerability of zanubrutinib vs ibrutinib as measured by incidence, timing, and severity of TEAEs per NCI-CTCAE (v4.03)

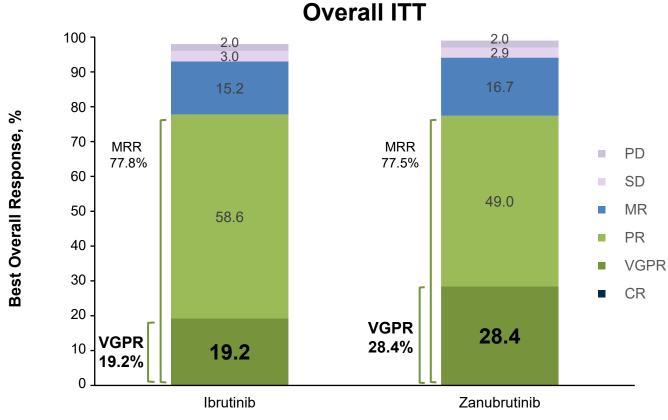
Exploratory Objectives

- Characterize the PK of zanubrutinib in patients with WM
- Compare QoL by EORTC QLQ-C30 and EQ-5D

ASPEN: Patient Disposition

ASPEN: Demographics and Disease Characteristics

	Overall ITT			
Characteristics, n (%)	Ibrutinib (n=99)	Zanubrutinib (n=102)		
Age median (range), y >65 y >75 y	70.0 (38-90) 70 (70.7) 22 (22.2)	70.0 (45-87) 61 (59.8) 34 (33.3)		
Sex, n (%) Male Female	65 (65.7) 34 (34.3)	69 (67.6) 33 (32.4)		
Prior lines of therapy, n (%) 0 1-3 >3	18 (18.2) 74 (74.7) 7 (7.1)	19 (18.6) 76 (74.5) 7 (6.9)		
Genotype by central lab ^a , n (%) MYD88 ^{L265P} /CXCR4 ^{WT} MYD88 ^{L265P} /CXCR4 ^{WHIM}	90 (90.9) 8 (8.1)	91 (89.2) 11 (10.8)		
IPSS WM¹ Low Intermediate High	13 (13.1) 42 (42.4) 44 (44.4)	17 (16.7) 38 (37.3) 47 (46.1)		
Hemoglobin ≤110 g/L	53 (53.5)	67 (65.7)		


^aWild-type–blocking polymerase chain reaction for *MYD88* and Sanger sequencing for *CXCR4* using bone marrow aspirates. One patient had local next-generation sequencing testing results of *MYD88*^{L265P}/*CXCR4* Unknown.

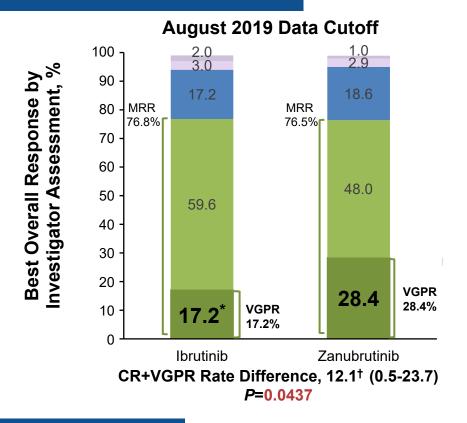
1. Morel P, et al. *Blood*. 2009;113:4163-4170.

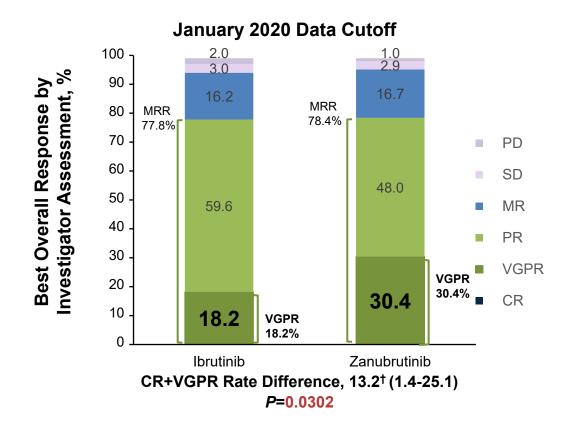
Abbreviations: *CXCR4*, C-X-C motif chemokine receptor 4; ITT, intention-to-treat; IPSS WM, International Prognostic Scoring System for Waldenström macroglobulinemia; *MYD88*, myeloid differentiation primary response gene 88; WT, wild-type.

ASPEN: Efficacy – Response by IRC (Data Cutoff: 31 August 2019)

Superiority in CR+VGPR rate compared with ibrutinib in R/R population (primary study hypothesis) was not significant

CR+VGPR Rate Difference, 10.2^b (-1.5 to 22.0) *P*=0.0921


Overall concordance between IRC and investigators was 94%.

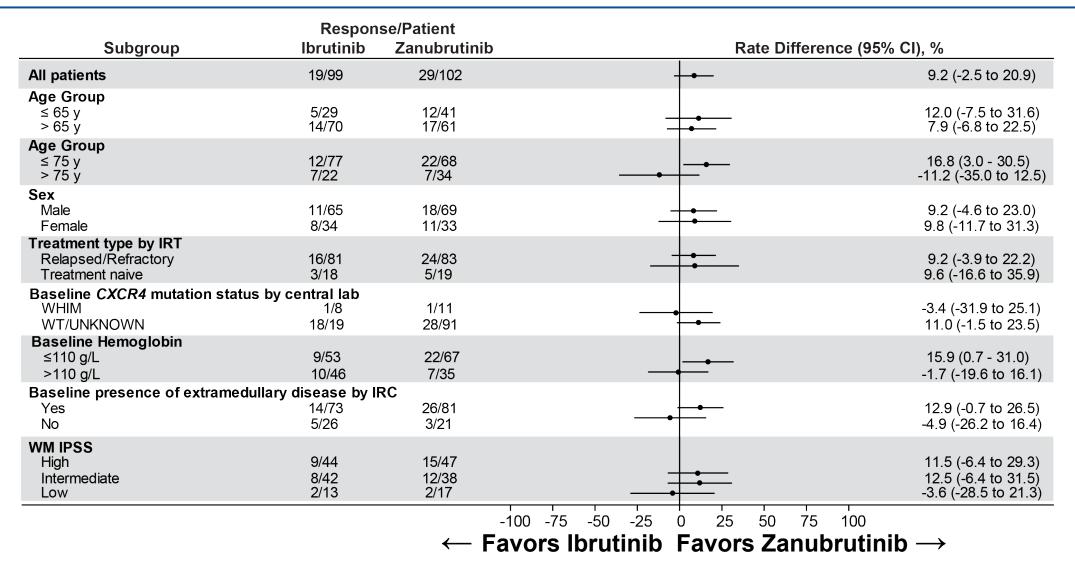

^aAll other *P* values are for descriptive purposes only.

^bAdjusted for stratification factors and age group.

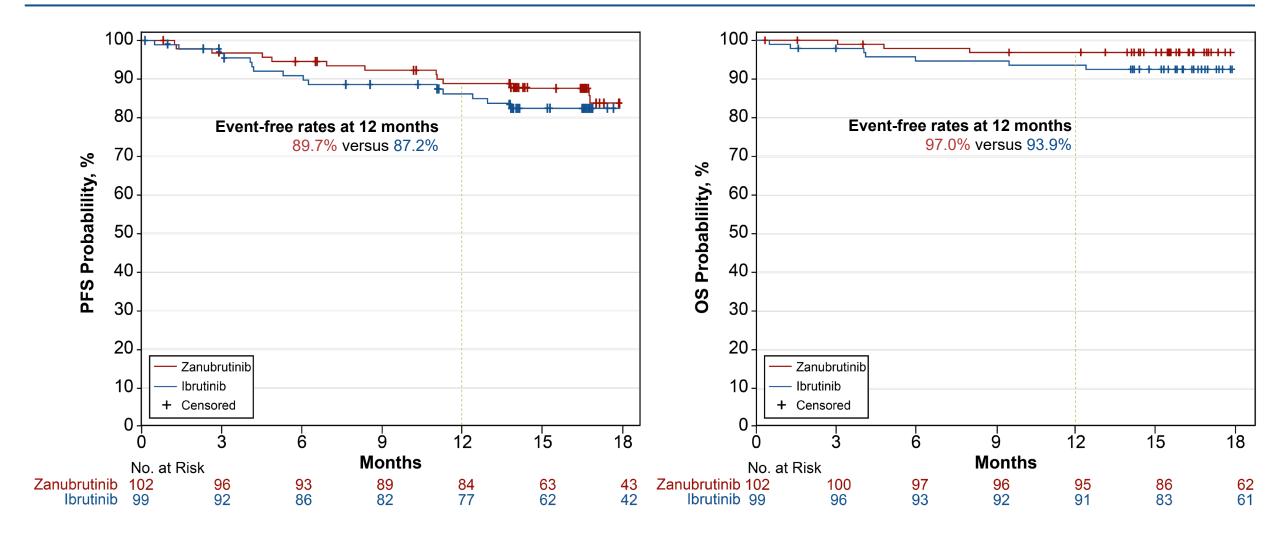
ASPEN: Secondary Efficacy Endpoints Assessment of Response According to Investigator

Investigator-Assessed Response

IgM Reduction


AUC for IgM reduction over time was significantly greater for zanubrutinib vs ibrutinib (P=0.037)

^{*}Excluded two patients with VGPR by IRC: MR (extramedullary disease present) and PR (immunoglobulin M assessment by local serum protein electrophoresis M-protein test).


†Adjusted for stratification factors and age group. *P* value is for descriptive purpose only.

Abbreviations: AUC, area under the curve; CR, complete response; IRC, independent review committee; MR, minor response; MRR, major response rate; PD, progressive disease; PR, partial response; SD, stable disease; VGPR, very good PR.

ASPEN: Forest Plot of CR+VGPR Response Rate Difference by IRC in Overall ITT Population

ASPEN: PFS and OS Survival in ITT Population

ASPEN: Safety and Tolerability

	Overall			
Category, n (%)	Ibrutinib (n=98)	Zanubrutinib (n=101)		
Patients with ≥1 AE	97 (99.0)	98 (97.0)		
Grade ≥3	62 (63.3)	59 (58.4)		
Serious	40 (40.8)	40 (39.6)		
AE leading to death	4 (4.1) ^a	1 (1.0) ^b		
AE leading to treatment discontinuation	9 (9.2) ^c	4 (4.0) ^d		
AE leading to dose reduction	23 (23.5)	14 (13.9)		
AE leading to dose held	55 (56.1)	47 (46.5)		
Patients with ≥1 treatment-related AE	84 (85.7)	80 (79.2)		
Patients with ≥1 AE of interest	81 (82.7)	86 (85.1)		

^aCardiac failure acute; sepsis (n=2); unexplained death.

^bCardiac arrest after plasmapheresis.

[°]G5 sepsis (n=2); G5 unexplained death; G3 acute myocardial infarction; G3 hepatitis; G3 pneumonia; G2 drug-induced liver injury; G2 pneumonitis; G1 pneumonitis.

ASPEN: Most Common AEs

	All Grades (≥20%)		Grade 2	≥3 (≥5%)
Event Preferred Term*, n (%)	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)
Diarrhea	31 (32)	21 (21)	1 (1)	3 (3)
Upper respiratory tract infection	28 (29)	24 (24)	1 (1)	0
Contusion	23 (24)	13 (13)	0	0
Muscle spasms [†]	23 (24)	10 (10)	1 (1)	0
Peripheral edema [†]	19 (19)	9 (9)	0	0
Hypertension	16 (16)	11 (11)	11 (11)	6 (6)
Atrial fibrillation [†]	14 (14)	2 (2)	3 (3)	0
Neutropenia [†]	12 (12)	25 (25)	8 (8)	16 (16)
Pneumonia [†]	12 (12)	2 (2)	7 (7)	1 (1)
Anemia	10 (10)	12 (12)	5 (5)	5 (5)
Thrombocytopenia	10 (10)	10 (9)	3 (3)	6 (5)

^{*}Including most common AEs and AEs with ≥10% or ≥5% differentials, respectively (higher frequency in bold red). †Descriptive 2-sided *P*<0.05.

Abbreviations: AE, adverse event.

ASPEN: AE Categories of Interest (BTKi Class AEs)

	All G	All Grades		Grade ≥3	
AE Categories, n (%) (Pooled Terms)	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)	
Atrial fibrillation/flutter [†]	15 (15.3)	2 (2.0)	4 (4.1)	0 (0.0)	
Diarrhea (PT)	31 (31.6)	21 (20.8)	1 (1.0)	3 (3.0)	
Hemorrhage	58 (59.2)	49 (48.5)	8 (8.2)	6 (5.9)	
Major hemorrhage*	9 (9.2)	6 (5.9)	8 (8.2)	6 (5.9)	
Hypertension	17 (17.3)	11 (10.9)	12 (12.2)	6 (5.9)	
Neutropenia ^{†,‡}	13 (13.3)	30 (29.7)	8 (8.2)	20 (19.8)	
Infection	66 (67.3)	67 (66.3)	19 (19.4)	18 (17.8)	
Second malignancy	11 (11.2)	12 (11.9)	1 (1.0)	2 (2.0)	

Higher AE rate in bold red with ≥10% difference in any grade or ≥5% difference in grade 3 or above. No tumor lysis syndrome was reported. Opportunistic infection ibrutinib (n=2), zanubrutinib (n=1). *Defined as any grade ≥3 hemorrhage or any grade central nervous system hemorrhage.

†Descriptive 2-sided *P*<0.05.

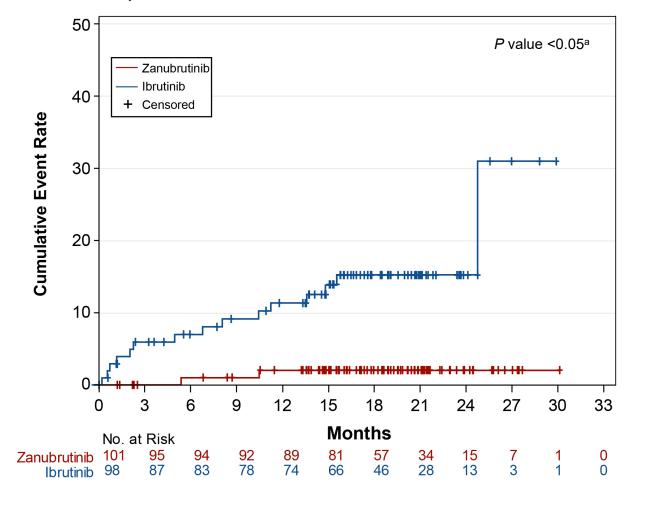
[‡]Including PT terms of neutropenia, neutrophil count decreased, febrile neutropenia, agranulocytosis, neutropenic infection, and neutropenic sepsis. **Abbreviations:** AE, adverse event; BTKi, Bruton tyrosine kinase inhibitor; PT, preferred term.

ASPEN: AE Categories of Interest (BTKi Class AEs) With Additional 5-Month Follow-Up (Data Cutoff: 31 January 2020)

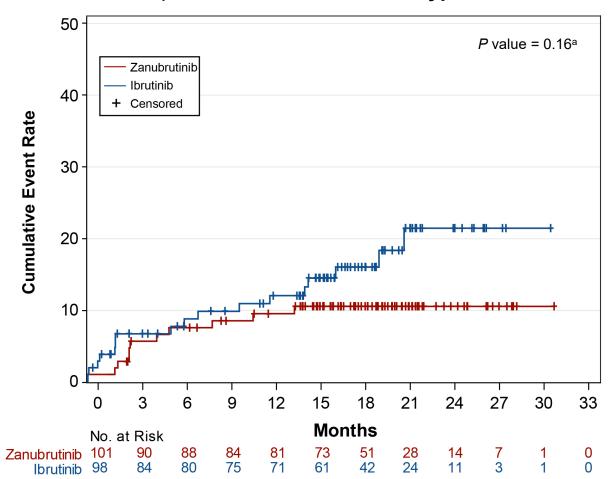
 An additional 5 patients in the ibrutinib arm discontinued treatment because of AEs vs 0 in the zanubrutinib arm (14.3% vs 4%)

	All G	All Grades		Grade ≥3	
AE Categories, n (%) (Pooled Terms)	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)	
Atrial fibrillation/flutter [†]	18 (18.4)	3 (3.0)	7 (7.1)	0 (0.0)	
Diarrhea (PT)	32 (32.7)	22 (21.8)	2 (2.0)	3 (3.0)	
Hemorrhage	59 (60.2)	51 (50.5)	9 (9.2)	6 (5.9)	
Major hemorrhage*	10 (10.2)	6 (5.9)	9 (9.2)	6 (5.9)	
Hypertension	20 (20.4)	13 (12.9)	15 (15.3)	8 (7.9)	
Neutropenia ^{†,‡}	15 (15.3)	32 (31.7)	8 (8.2)	23 (22.8)	
Infection	70 (71.4)	70 (69.3)	23 (23.5)	19 (18.8)	
Second malignancy	12 (12.2)	13 (12.9)	1 (1.0)	3 (3.0)	

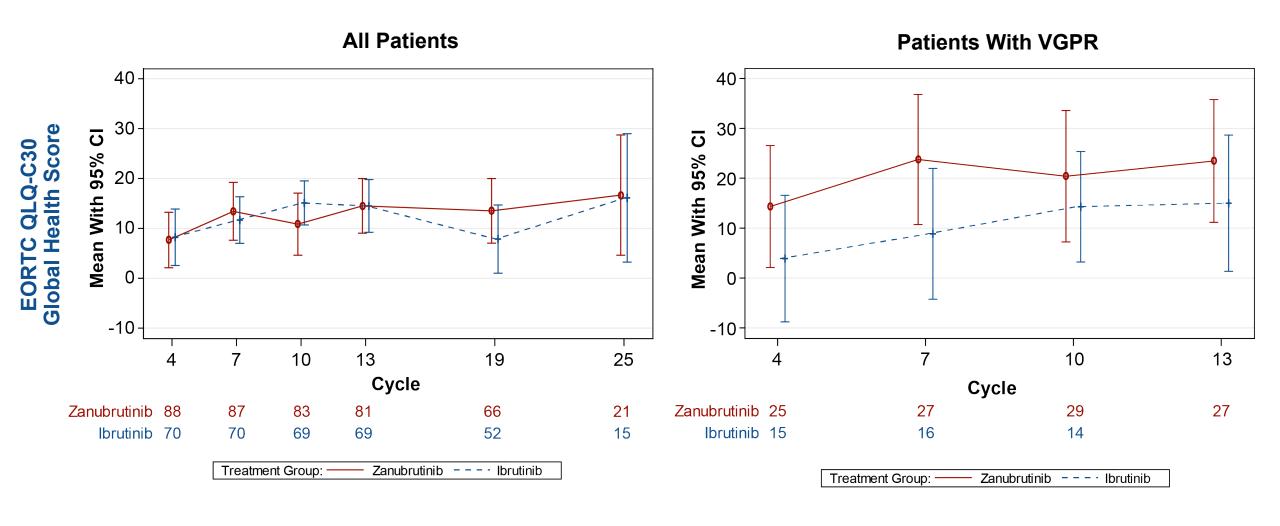
Higher AE rate in bold red with ≥10% difference in any grade or ≥5% difference in grade 3 or above.


^{*}Defined as any grade ≥3 hemorrhage or any-grade central nervous system hemorrhage.

[†]Descriptive 2-sided *P*<0.05.


[‡]Including PT terms of neutropenia, neutrophil count decreased, febrile neutropenia, agranulocytosis, neutropenic infection, and neutropenic sepsis. **Abbreviations:** AE, adverse event; BTKi, Bruton tyrosine kinase inhibitor; PT, preferred term.

ASPEN: Time to AE - Risk Analysis Over Duration of Treatment


Kaplan-Meier Curve: Time to **Atrial Fibrillation/Flutter**

Kaplan-Meier Curve: Time to **Hypertension**

ASPEN: Quality of Life – Change From Baseline Over Time

ASPEN Conclusions

- Zanubrutinib was associated with a CR+VGPR response rate of 28.4% compared with ibrutinib of 19.2% (P=0.0921) in MYD88^{mut} WM patients
 - The primary hypothesis of superiority in CR+VGPR rate (by IRC) was not met
 - No CRs were observed
 - Greater VGPR rate by investigator assessment (ITT, 28.4% vs 17.2%; P=0.04a)
 - Deeper and sustained IgM reduction over time (P=0.04^a)
- Zanubrutinib demonstrated clinically meaningful advantages in safety and tolerability
 - Lower risk of atrial fibrillation/flutter compared with ibrutinib (2.0% vs 15.3%; P=0.0008^a)
 - Lower rates of major bleeding (5.9% vs 9.2%), diarrhea (20.8% vs 31.6%), and hypertension (10.9% vs 17.3%)
 - There was no difference in the rate of infection despite higher rates of neutropenia with zanubrutinib
 - Fewer AEs leading to death, treatment discontinuation, or interruption with zanubrutinib

Acknowledgment

- We would like to thank the site support staff, study sponsors, and collaborators as well as participating patients and their families
- This study was sponsored by BeiGene, Ltd. Editorial support was provided by Peloton Advantage, LLC, an OPEN Health company, Parsippany, NJ and funded by BeiGene.
- Correspondence: cfernan1@clinic.cat

Copies of this presentation are for personal use only and may not be reproduced without permission.