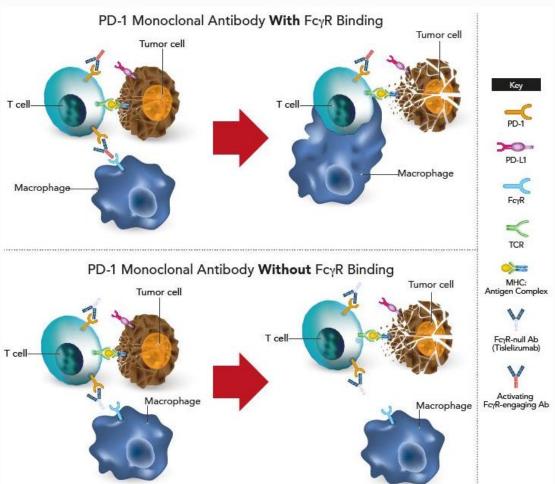
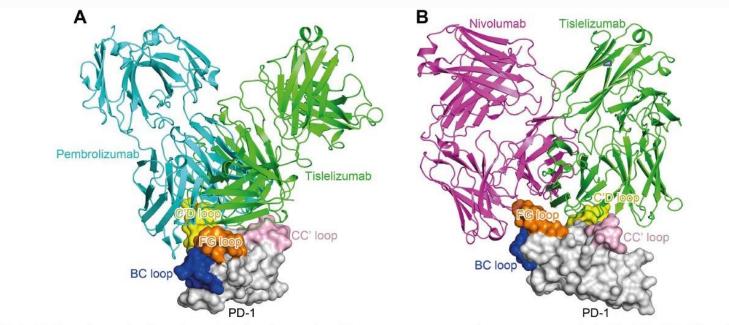
Tislelizumab in Chinese Patients With Melanoma, Urothelial Carcinoma (UC), and Renal Cell Carcinoma (RCC)


Jun Guo¹, Ying Yuan², Yuxian Bai³, Qingyuan Zhang³, Tianshu Liu⁴, Yongqian Shu⁵, Dingwei Ye⁶, Ting Sun⁷, Aiping Zhou⁸, Jian Li⁹, Silu Yang⁹, Yujuan Gao⁹, Xin Li⁹, Hongming Pan¹⁰

¹Beijing Cancer Hospital, Beijing, China; ²The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China; ³Harbin Medical University Cancer Hospital, Harbin, China; ⁴Zhongshan Hospital Fudan University, Shanghai, China; ⁵Jiangsu Province People's Hospital, Nanjing, China; ⁶Fudan University Shanghai Cancer Center, Shanghai, China; ⁷The First Affiliated Hospital of Nanchang University, Nanchang, China; ⁸Tumor Hospital of Chinese Medical Science Institute, Beijing, China; ⁹BeiGene (Beijing) Co., Ltd., Beijing, China ¹⁰Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China

Tislelizumab: A Uniquely Engineered Anti-PD-1 Monoclonal Antibody

- Tislelizumab is an investigational humanized IgG4 monoclonal antibody with high affinity/specificity for PD-1¹
- Tislelizumab was engineered to minimize binding to FcγR on macrophages, in order to abrogate antibodydependent phagocytosis, a potential resistance to anti-PD-(L)1 therapy^{1,2}


Abbreviations: Ab, antibody; MHC, major histocompatibility complex; PD-1, programmed death-1 receptor; PD-L1, programmed death ligand-1; TCR, T-cell receptor.

1. Zhang T, et al. Cancer Immunol Immunother. 2018;67:1079-1090; 2. Dahan R, et al. Cancer Cell. 2015;28:543.

Tislelizumab Binding Orientation to PD-1 Is Different From Pembrolizumab (A) and Nivolumab (B)

- Tislelizumab has a unique binding surface on PD-1 that differs from that of pembrolizumab and nivolumab¹
- Tislelizumab shows higher affinity to PD-1 than pembrolizumab and nivolumab with \sim 100- and 50-fold slower off-rates, respectively¹

PD-1, tislelizumab, pembrolizumab, and nivolumab are colored in gray, green, cyan and magenta, respectively. The BC, CC', C'D and FG loops of PD-1 are colored in blue, pink, yellow and orange, respectively.

Abbreviation: PD-1, programmed death-1 receptor.

¹Feng Y, et al. American Association of Cancer Research Annual Meeting; 2019. Abstract 4048.

BGB-A317-102: Ongoing, Phase 1/2 Study of Tislelizumab in Chinese Patients With Advanced Solid Tumors

Phase 1
Dose verification

Phase 2 Indication expansion**

Tislelizumab 200 mg Q3W*

Phase 1 PK substudy

Tislelizumab (A) 200 mg Q3W***

Tislelizumab (B) 200 mg Q3W***

Arm 1 Melanoma (excluding uveal or ocular melanoma) n=20	Arm 2 PD-L1-positive NSCLC n=20	Arm 3 PD-L1-negative NSCLC n=20	Arm 4 Gastric cancer n=20
Arm 5 Esophageal squamous cell carcinoma n=20	Arm 6 Renal cell carcinoma (containing component of clear cell) n=20	Arm 7 Urothelial carcinoma n=20	Arm 8 MSI-H or dMMR CRC n=20
· · · · · · · · · · · · · · · · · · ·	l cell neuroendocrine ther tumors with dMMR	Arm 10 NPC n=20	Arm 11 Child-Pugh A HCC n=20

^{*}In the dose-verification study, three to six subjects were enrolled to assess DLT and RP2D; if no DLT was found, this cohort would expand to 20 subjects.

Abbreviations: CRC, colorectal cancer; DLT, dose-limiting toxicity; dMMR, defective mismatch repair; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; MSI-H, microsatellite instability-high; NPC, nasopharyngeal cancer; NSCLC, non-small cell lung cancer; PD-L1, programmed death ligand-1; PK, pharmacokinetics; Q3W, every 3 w eeks; RP2D, recommended phase 2 dose; TNBC, triple-negative breast cancer.

^{**}In the indication-expansion phase, ~20 subjects were enrolled into each arm. For tumors that are difficult to enroll, the sporsor may early terminate the enrollment of subjects.

^{***}In the PK substudy, a total of 48 subjects (24 per arm) are planned to be enrolled to receive treatment of tislelizumab of two manufacturing process and scales.

Adverse Events Considered Related to Tislelizumab (All Patients; N=300)

- Across the entire study, the most common treatment-related AEs (TRAEs) were anemia
 (23%) and increased AST (22%); most TRAEs were grade ≤2 in severity
 - The most common grade ≥3 TRAEs were increased GGT (4%), anemia (3%), and increased AST (3%)
- After the first dose of study treatment, one patient with gastric cancer experienced grade 5 brain edema, which was considered possibly related to tislelizumab by the investigator
 - The patient had multiple brain metastases with surrounding edema at baseline, and had significant progression of brain metastases before death

Treatment-Related Adverse Events Occurring in ≥10% of Overall Patients

Treatment Related Adverse Events Octobring in 21070 or Overall Fatients						
	Grade 1-2	Grade ≥3	All Grades			
Patients who experienced ≥1 TRAE	162 (54)	99 (33)	261 (87)			
Anemia	61 (20)	9 (3)	70 (23)			
Transaminases increased						
Increased AST	59 (20)	8 (3)	67 (22)			
Increased ALT	55 (18)	4 (1)	59 (20)			
Proteinuria	42 (14)	1 (<1)	43 (14)			
Increased blood bilirubin	40 (13)	0	40 (13)			
Hypothyroidism	33 (11)	0	33 (11)			
Decreased white blood cell count	31 (10)	2 (<1)	33 (11)			
Increased conjugated bilirubin	30 (10)	2 (<1)	32 (11)			
Pyrexia	31 (10)	0	31 (10)			

Data presented as n (%). **Abbreviations**: AE, Adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT; gamma-glutamytransferase (GGT) TRAE, treatment-related adverse event.

Demographics and Baseline Disease Characteristics

 Enrolled patients (n=77) with melanoma, UC, and RCC were pooled from phase 1 and phase 2 of this study

	Melanoma (n=34) ^a	UC (n=22)	RCC (n=21) ^b				
Median age, years (range)	54 (34-75)	62 (43-73)	53 (18-68)				
Gender, n (%)							
Male	15 (44)	16 (73)	15 (71)				
Female	19 (56)	6 (27)	6 (29)				
ECOG PS, n (%)							
0	10 (29)	7 (32)	6 (29)				
1	24 (71)	15 (68)	15 (71)				
Tumor stage, n (%)							
Locally advanced	1 (3)	1 (5)	0				
Metastatic disease	33 (97)	21 (95)	21 (100)				
Patients with prior systemic anticancer therapy, n (%)	30 (88)	21 (96)	21 (100)				
Number of lines of prior systemic anticancer therapy, n (%) ^c							
0	4 (12)	1 (5)	0				
1 2	12 (35)	11 (50)	8 (38)				
	11 (32)	4 (18)	7 (33)				
≥3	7 (21)	6 (27)	6 (29)				
Prior treatment received, n (%) ^d							
Cytotoxic therapy	23 (77)	21 (100)	8 (38)				
TKI	6 (20)	2 (10)	19 (90)				
Monoclonal antibodies	1 (3)	0	Ŏ ,				
Study follow-up duration, months (range)	8 (1-18)	4.2 (1-22)	16 (3-18)				

alncluded 16 (47%) patients with cutaneous melanoma, 13 (38%) with mucosal melanoma, 5 (15%) with melanoma of unknown primary site. PRCC containing the component of clear cell. Including adjuvant, neoadjuvant, and palliative therapy(ies). Percentages are based on the number of patients who received prior systemic anticancer therapy.

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; RCC, renal cell carcinoma; TKI, tyrosine kinase inhibitor; UC, urothelial carcinoma.

Responses to Tislelizumab

	Melanoma (n=34)	UC (n=22)	RCC (N=21)
BOR per RECIST v1.1 (confirmed)			
Complete response (CR), n (%)	0	0	0
Partial response (PR), n (%)	5 (15)	3 (14)	2 (10)
Stable disease (SD), n (%)	8 (24)	6 (27)	9 (43)
Progressive disease (PD), n (%)	17 (50)	5 (23)	7 (33)
Missing/Not evaluable, n (%)	4 (12)	8 (36)	3 (14)
ORR (CR+PR), % (95% CI)	15 (5-31)	14 (3-35)	10 (1-30)
DCR (CR+PR+SD), % (95% CI)	38 (22-56)	41 (21-64)	52 (30-74)
CBR (CR+PR+durable SD) ^a	35 (20-54)	27 (11-50)	52 (30-74)

Abbreviations: BOR, best overall response; CI, confidence interval; ORR, objective response rate; RCC, renal cell carcinoma; RECIST, Response Evaluation Criteria in Solid Tumors; UC, urothelial carcinoma.

^aDurable SD represents stable disease ≥16 weeks.

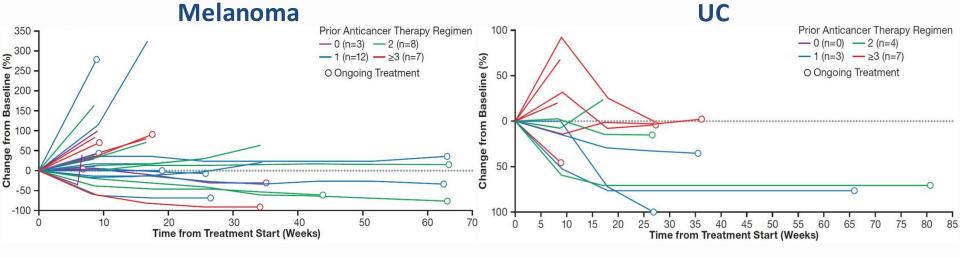
Disease assessment by radiographic imaging was performed every 9 weeks during first 12 months and every 12 weeks thereafter.

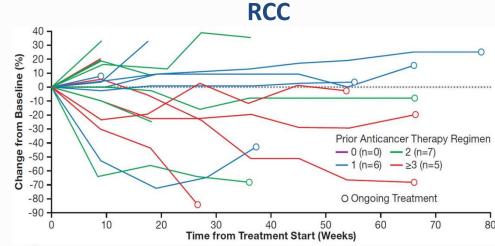
Responses to Tislelizumab

	Melanoma (n=34)	UC (n=22)	RCC (N=21)
BOR per RECIST v1.1 (confirmed)			
Complete response (CR), n (%)	0	0	0
Partial response (PR), n (%)	5 (15)	3 (14)	2 (10)
Stable disease (SD), n (%)	8 (24)	6 (27)	9 (43)
Progressive disease (PD), n (%)	17 (50)	5 (23)	7 (33)
Missing/Not evaluable, n (%)	4 (12)	8 (36)	3 (14)
ORR (CR+PR), % (95% CI)	15 (5-31)	14 (3-35)	10 (1-30)
DCR (CR+PR+SD), % (95% CI)	38 (22-56)	41 (21-64)	52 (30-74)
CBR (CR+PR+durable SD) ^a	35 (20-54)	27 (11-50)	52 (30-74)

Responses were observed in both PD-L1 positive^a and negative UC tumors

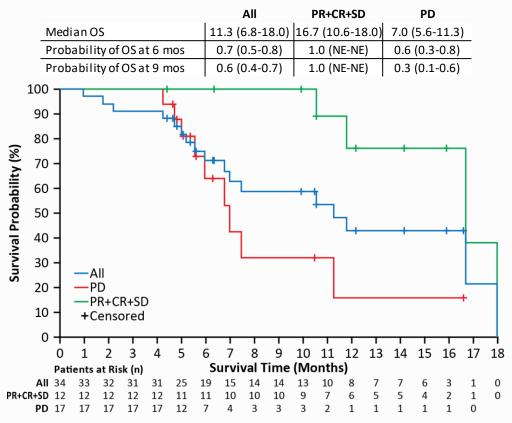
	Melanoma (n=34)			UC (n=22)			RCC (N=21)		
	PD-L1 ⁺ (n=4)	PD-L1 ⁻ (n=26)	Unknown (n=4)	PD-L1 ⁺ (n=5)	PD-L1- (n=16)	Unknown (n=1)	PD-L1 ⁺ (n=2)	PD-L1 ⁻ (n=18)	Unknown (n=1)
ORR, % (95% CI)	0	15 (4-35)	25 (1-81)	20 (1-72)	13 (2-38)	0	0	11 (1-35)	0
DCR, % (95% CI)	25 (1-81)	39 (20-59)	50 (7-93)	20 (1-72)	50 (25-75)	0	100 (16-100)	50 (26-74)	0


^aPD-L1 positivity was defined by ≥10% of tumor cells with PD-L1 membrane staining at any intensity by using the VENTANA™ PD-L1 (SP263) assay. Disease assessment by radiographic imaging was performed every 9 weeks during first 12 months and every 12 weeks thereafter.


Abbreviations: BOR, best overall response; CI, confidence interval; ORR, objective response rate; RCC, renal cell carcinoma; RECIST, Response Evaluation Criteria in Solid Tumors; UC, urothelial carcinoma.

Change in Target Lesion Diameter

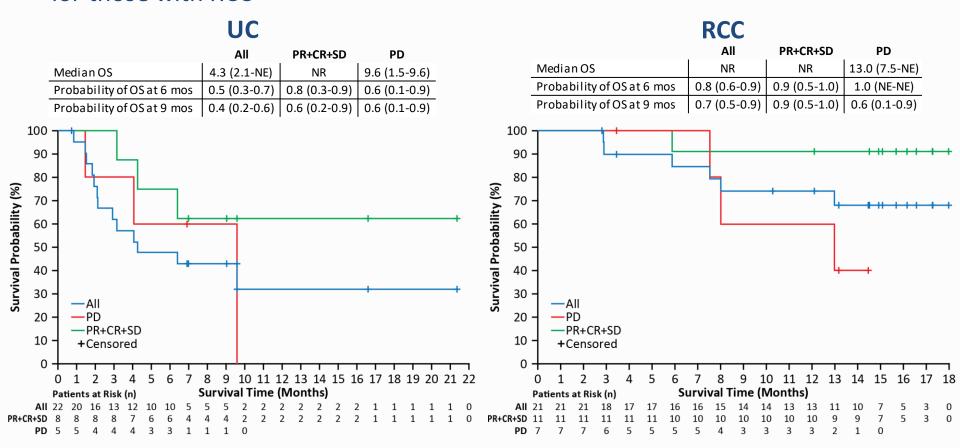
 In patients with melanoma, UC, and RCC, durable decreases in sum of target lesion diameters were observed even in heavily pretreated patients



Overall Survival

- Median overall survival was 11.3 months for patients with melanoma
- Melanoma patients with controlled disease had an increased probability of survival at 6 and 9 months compared to those with progressive disease

Melanoma



Data presented as months (95% CI). **Abbreviations:** CI, confidence interval; CR, complete response; NE, not evaluable; OS, overall survival; PD, progressive disease; PR, partial response; SD, stable disease.

Overall Survival

 Median overall survival was 4.3 months for patients with UC and was not reached for those with RCC

 In RCC, patients with controlled disease had an increased probability of survival at 9 months compared to patients with progressive disease

Data presented as months (95% CI). **Abbreviations:** CR, complete response; NE, not evaluable; NR, not reached; OS, overall survival; PD, progressive disease; PR, partial disease; RCC, renal cell carcinoma; SD, stable disease; UC, urothelial carcinoma.

2019年 CSCO 年会 厦门

Conclusions

- Tislelizumab was generally well tolerated and demonstrated preliminary antitumor activity in patients with melanoma, UC, and RCC
 - The objective response rate was driven by partial responses and was 15% for patients with melanoma, 14% for UC, and 10% for RCC
 - Median overall survival was 11.3 months for patients with melanoma;
 median overall survival was 4.3 months for patients with UC and was not reached for those with RCC
- The preliminary safety profile and antitumor activity support continued development of tislelizumab in patients with melanoma, UC, and RCC
 - A phase 3 study of tislelizumab as treatment for UC (NCT03967977)
 currently ongoing and recruiting patients

The authors wish to acknowledge the investigative center study staff and study patients, and to recognize those from BeiGene, Ltd. who have substantially contributed to the development of this presentation.

This study was sponsored by BeiGene, Ltd. Writing and editorial assistance was provided by Stephan Lindsey, PhD, and Elizabeth Hermans, PhD (OPEN Health Medical Communications, Chicago, IL), and funded by the study sponsor.