Efficacy and Safety of Zanubrutinib in Japanese Patients With Mature B-Cell Malignancies

Takayuki Ishikawa,¹ Masahiro Takeuchi,² Kazuyuki Shimada,³ Kohmei Kubo,⁴ Takeshi Kondo,⁵ Katsuya Fujimoto,⁵ Tomoaki Fujisaki,⁵ Koji Nagafuji,² Rika Sakai,⁵ Shingo Kurahashi,¹⁰ Tatsuro Jo,¹¹ Kazutaka Sunami,¹² Senji Kasahara,^{13,14} Tomonori Nakazato,¹⁵ Haiyi Guo,¹⁶ William Novotny,¹⁶ Chris Tankersley,¹⁶ Motohisa Takai,¹⁶ Hui Yao,¹⁶ Jinhua Zhong,¹⁶ Hongjie Zhu,¹⁶ and Koji Izutsu¹⁷

¹Kobe City Medical Center General Hospital, Kobe, Japan; ¹Aomori, Japan; ¹Aomori, Japan; ¹Aomori, Japan; ¹Aomori Prefectural Central Hospital, Nagoya University Hospital, Nagoya, Japan; ¹Aomori, Japan; ՚Aomori, Japan; ՚Aom ⁷Matsuyama Red Cross Hospital, Matsuyama, Japan; ¹⁰Toyohashi, Center, Okayama, Japan; ¹³Gifu Municipal Hospital, Gifu, Japan; ¹⁴Gifu Pharmaceutical University, Gifu, Japan; ¹⁵Yokohama Municipal Citizen's Hospital, Tokyo, Japan

INTRODUCTION

- Zanubrutinib is a potent and selective irreversible next-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target kinase inhibition and associated AEs^{1,2}
- Zanubrutinib is approved globally for the treatment of B-cell malignancies in adults³⁻⁵
- BGB-3111-111 (NCT04172246) is an ongoing, multicenter, open-label phase 1/2 study to assess the safety and efficacy of zanubrutinib in Japanese patients with mature B-cell malignancies
- Here, we present investigator-assessed efficacy and safety data from patients in the BGB-3111-111 study

METHODS

Key Inclusion Criteria

- Patients with a confirmed diagnosis of mature B-cell neoplasms, including CLL/SLL, MCL, FL, MZL, and WM
- Measurable disease by CT/MRI for patients with MCL, MZL, and FL and by serum IgM level >0.5 g/dL for patients with WM

Key Exclusion Criteria

- Prior allogeneic stem cell transplant, systemic chemotherapy or radiation therapy within 2 weeks prior to first dose of zanubrutinib
- Prior therapy with B-cell receptor inhibitor (eg, BTK, PI3Kδ, and/or SYK inhibitor) or BcI-2 inhibitor (eg, venetoclax/ABT-199)

Response Assessment

Responses were assessed by investigators based on the Lugano Classification for MCL (PET- and CT-/ MRI-based) and SLL (CT-/MRI-based),⁶ 2018 iwCLL guidelines with modification for treatment-related lymphocytosis for CLL,⁷ and WM response criteria updated at the 6th International Workshop on WM⁸

Figure 1. BGB-3111-111 Study Design

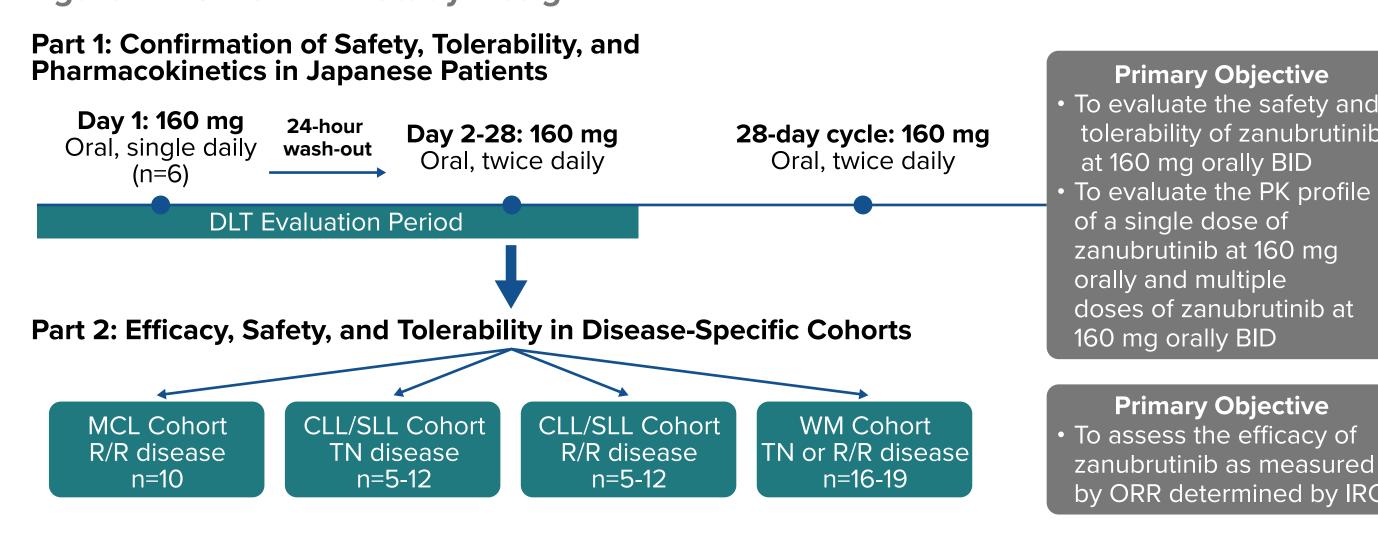
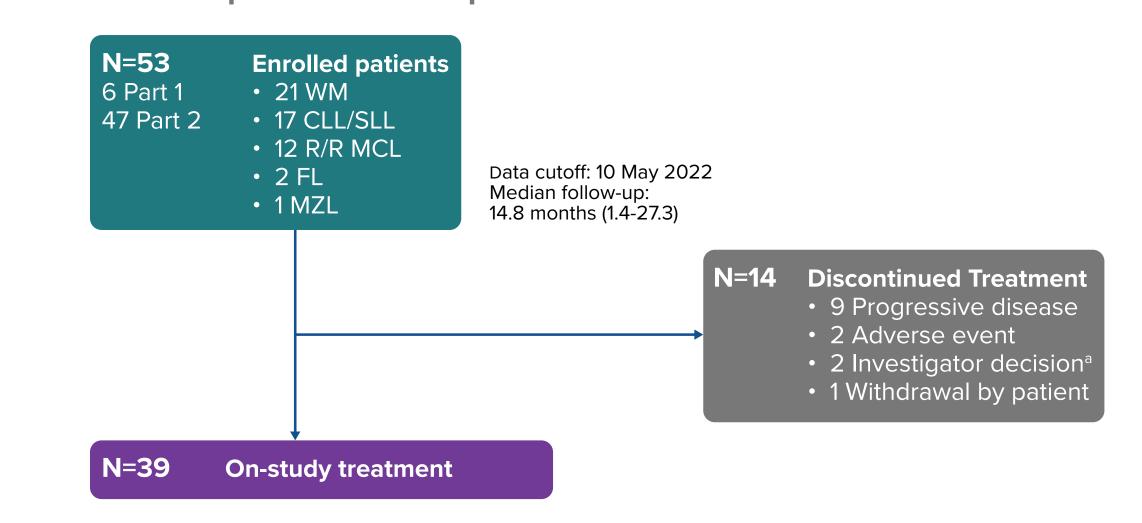
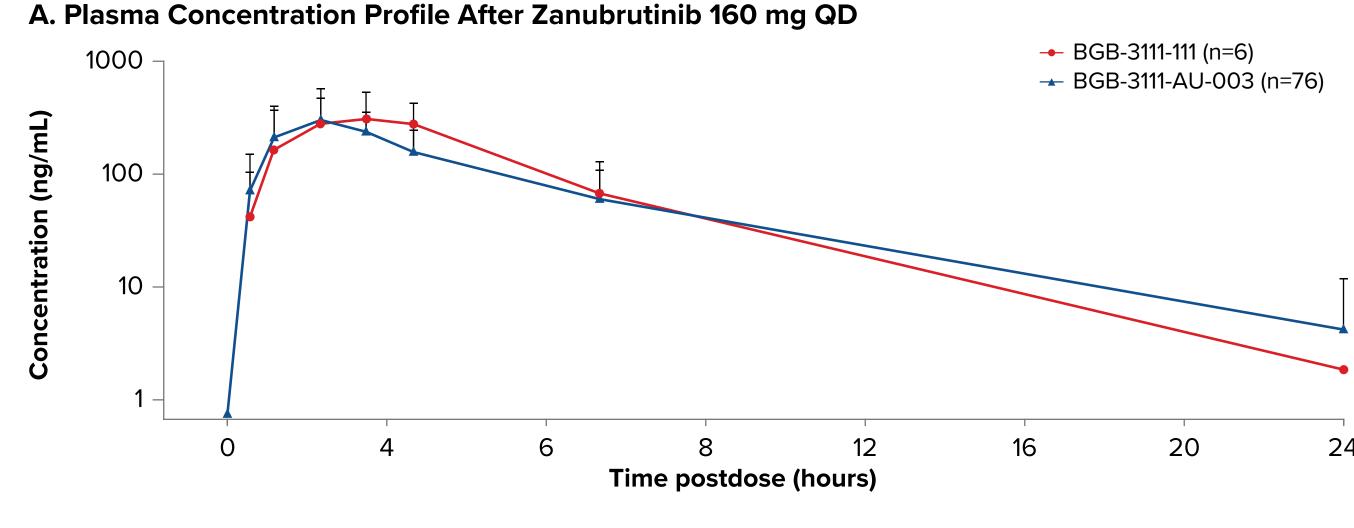
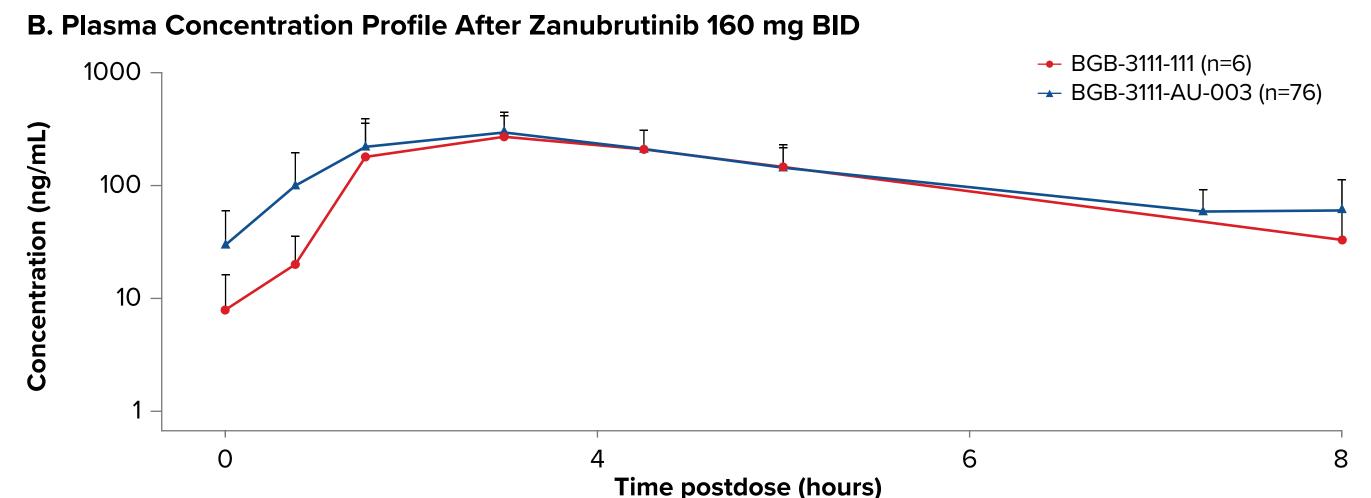



Table 1. Patient Demographics and Baseline Characteristics

Characteristics	Part 1 (n=6)	Part 2 (n=47)	Overall (N=53)
Indications, n (%)			
WM	2 (33.3)	19 (40.4)	21 (39.6)
TN CLL/SLL	0	14 (29.8)	14 (26.4)
R/R CLL/SLL	0	3 (6.4)	3 (5.7)
R/R MCL	1 (16.7)	11 (23.4)	12 (22.6)
FL	2 (33.3)	0	2 (3.8)
MZL	1 (16.7)	0	1 (1.9)
Median age (range), years	68.5 (47-84)	71 (37-83)	71 (37-84)
Sex, n (%)			
Male, n	5 (83.3)	31 (66.0)	36 (67.9)
Female, n	1 (16.7)	16 (34.0)	17 (32.1)
ECOG PS, n (%)			
0	5 (83.3)	37 (78.7)	42 (79.2)
≥1	1 (16.7)	10 (21.3)	11 (20.8)
Prior lines of therapy for R/R patients, median (range), n (%)	5 (1-6)	1 (1-8)	2 (1-8)


RESULTS


Figure 2. Patient Disposition and Exposure

One patient discontinued to prioritize treatment for angiosarcoma. One patient discontinued due to noncompliance with the study drug.

Figure 3. Plasma Exposure of Zanubrutinib

Plasma concentration profiles show arithmetic mean (+ standard deviation) for the 24-hour PK evaluation on (A) day 1 of cycle 1 and (B) day 1 of cycle 2. Zanubrutinib plasma concentrations on y-axis are shown in logarithmic scale.

• The exposure of zanubrutinib in Japanese patients (BGB-3111-111) was comparable to exposures observed

in published zanubrutinib trials at equivalent doses (BGB-3111-AU-003)9 • The early difference in 160 mg BID concentration may likely be due to high variability and small

sample size

Table 2. Summary of Adverse Events

AEs, n (%)	Total N=53
Serious AEs	13 (24.5)
Fatal AEs	1 (1.9) ^a
AEs leading to dose interruption	14 (26.4)
AEs leading to dose reduction	2 (3.8)
AEs leading to treatment discontinuation	2 (3.8)
Data cutoff: 10 May 2022. One patient with R/R MCL experienced a fatal TEAE of septic shock.	

Table 3. Most Common Any Grade and Grade ≥3 Adverse Events

AEs, n (%)	N=53
Any AE	48 (90.6)
Most common AEs ^a	
Platelet count decreased	10 (18.9)
Pyrexia	7 (13.2)
Neutrophil count decreased	6 (11.3)
Anemia	5 (9.4)
Back pain	5 (9.4)
Constipation	5 (9.4)
Decreased appetite	5 (9.4)
Hypertension	5 (9.4)
Purpura	5 (9.4)
Arthralgia	4 (7.5)
Headache	4 (7.5)
Any grade ≥3 AE ^b	22 (41.5)
Neutrophil count decreased	5 (9.4)
Platelet count decreased	5 (9.4)
Neutropenia	3 (5.7)
Pata cutoff: 10 May 2022.	

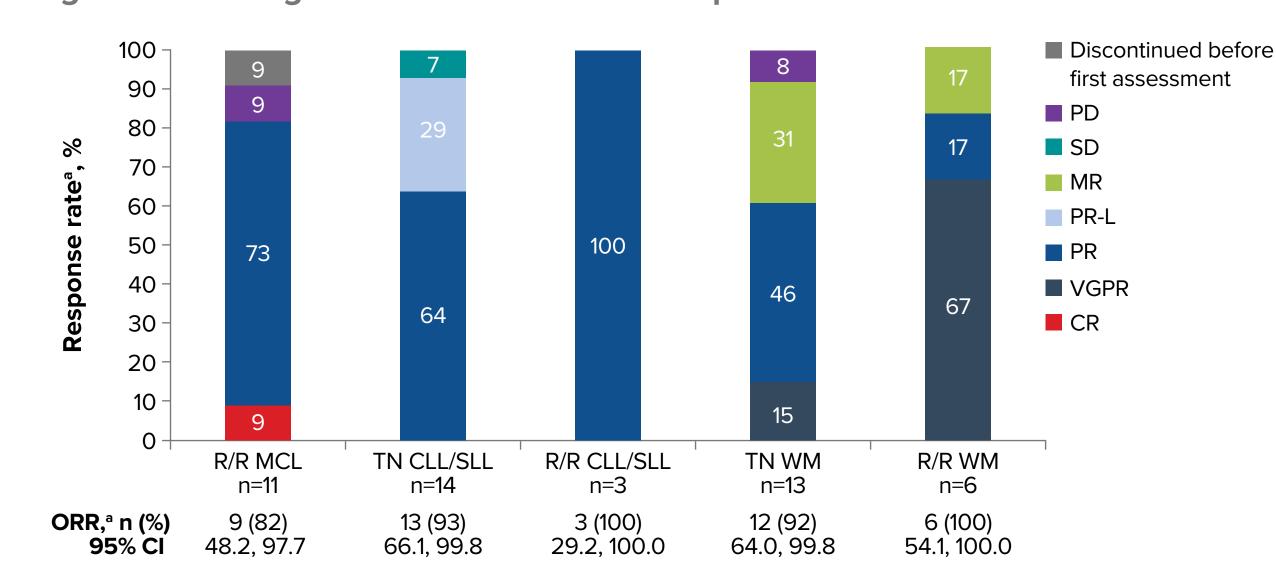

^aOccurring in ≥4 patients any grade. ^bOccurring in ≥3 patients ≥grade 3.

Table 4. TEAEs of Special Interest

	Overall (N=53)		
TEAEs, n (%)	Any grade	Grade ≥3	
Patients with ≥1 TEAE of special interest ^a	35 (66.0)	17 (32.1)	
Hemorrhage ^b	21 (39.6)	5 (9.4)	
Major hemorrhage ^c	5 (9.4)	5 (9.4)	
Infections	17 (32.1)	6 (11.3)	
Opportunistic infections	1 (1.9)	1 (1.9)	
Thrombocytopenia ^d	11 (20.8)	5 (9.4)	
Neutropenia ^e	9 (17.0)	8 (15.1)	
Anemia	5 (9.4)	1 (1.9)	
Hypertension	5 (9.4)	1 (1.9)	
Second primary malignancies	4 (7.5)	4 (7.5)	
Skin cancers	2 (3.8)	2 (3.8)	

Data cutoff: 10 May 2022. ^aNo patient reported ventricular arrhythmias. ^bIncluding terms of 5 purpura, 3 conjunctival hemorrhage, and 3 petechiae. ^cCombined terms of gastric hemorrhage, hyphema, post procedural hemorrhage, traumatic intracranial hemorrhage, and tumor hemorrhage. ^aCombined terms of thrombocytopenia and platelet count decreased. ^eCombined terms of neutropenia, neutrophil count decreased, and

Figure 4. Investigator-Assessed Overall Response

Data cutoff: 10 May 2022. ^aThe overall response rate is defined as PR or better for MCL; PR-L or better for CLL/SLL; MR or better for WM.

• Median duration of response and median PFS have not been reached for any disease cohort

CONCLUSIONS

- The plasma exposure of zanubrutinib in Japanese patients (BGB-3111-111) was comparable to exposures observed in published zanubrutinib trials at equivalent doses (BGB-3111-AU-003)9-14
- Zanubrutinib was shown to be highly active in Japanese patients with WM, CLL/SLL, and R/R MCL
- Investigator-assessed efficacy data in Japanese patients were comparable with the efficacy of zanubrutinib seen in global zanubrutinib studies⁹⁻¹⁴
- Zanubrutinib was generally well tolerated in Japanese patients with B-cell malignancies
- Preliminary safety and efficacy data from this phase 1/2 study support the use of zanubrutinib as a treatment option for Japanese patients with WM, CLL/SLL, and R/R MCL

REFERENCES

Total

1. Guo et al. *J Med Chem* 2019;62(17):7923-7940

2. Shadman et al. *Lancet Haematol* Forthcoming 2022 3. BRUKINSA [package insert]. San Mateo, USA. BeiGene USA, Inc. Sept 2021

4. BRUKINSA [product monograph]. BeiGene Switzerland GmbH. February 2021

5. Zanubrutinib; National Medical Products Administrations; 2021 6. Cheson et al. J Clin Oncol 2014;32(27):3059-3068

7. Hallek et al. *Blood* 2008;111(12):5446-5456

8. Owen et al. Br J Haematol 2013;160(2):171-176 9. Takeuchi et al. SH 2022. Abstract OS3-6B-5

10. Tam et al. *Lancet Oncol* 2022;23(8):1031-1043 11. Hillmen et al. EHA 2021. Abstract LB1900

12. Tam et al. Future Oncol 2018;14(22):2229-2237

13. Song et al. *Blood* 2022;139(21):3148-3158 14. Tam et al. *Blood* Adv 2022;6(4):1296-1308

ABBREVIATIONS

AE, adverse event; BCL2, B-cell lymphoma 2; BID, twice daily; BTK, Bruton tyrosine kinase; CI, confidence interval; CLL, chronic lymphocytic leukemia; CR, complete response; CT, computed tomography; DLT, doselimiting toxicity; ECOG PS, Eastern Cooperative Oncology Group performance status; FL, follicular lymphoma; IgM, immunoglobulin M; IRC, independent review committee; iwCLL, International Workshop on CLL; MCL, mantle cell lymphoma; MR, minor response; MRI, magnetic resonance imaging; MZL, marginal zone lymphoma; ORR, overall response rate; PD, progressive disease; PI3Kδ, phosphoinositide 3 kinase delta; PK, pharmacokinetic; PR, partial response; PR-L, partial response with lymphocytosis; QD, once daily; R/R, relapsed or refractory; SD, stable disease; SLL, small lymphocytic lymphoma; SYK, spleen tyrosine kinase; TEAE, treatment-emergent adverse event; TN, treatment-naïve; VGPR, very good partial response; WM, Waldenström macroglobulinemia.

DISCLOSURES

KSh: consultancy with Chugai, Daiichi Sankyo, BMS, AbbVie, Novartis, Meiji Seika; hesearch funding from Celgene, Chugai, Kyowa Kirin, Daiichi Sankyo, Otsuka, Eisai; honoraria from Celgene, BMS, Eisai, Chugai, Novartis, Daiichi Sankyo, AstraZeneca, Janssen, Takeda, Symbio, Asclepia.

TK: honoraria from Otsuka, Pfizer, Astellas, Bristol Myers Squibb, AbbVie, Nippon Shinnyaku RS: research funding from Chugai Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Taiho Pharma; honoraria from Kyowa Hakko Kirin Co., Ltd., AstraZeneca, Takeda, Sym Bio Pharmaceuticals, Janssen, CSL

Behring K.K, Eisai Co., Ltd., Nippon Shinyaku Co., Ltd., BMS, Mundipharma K.K., Nihon Medi-Physics Co., Ltd., Meiji Seika Pharma Co., Ltd., Sanofi S.A. KSu: research funding from ONO, MSD, Celgene, AbbVie, Takeda, Sanofi, BMS, Daiichi-Sankyo, Alexion Pharma,

GSK, Chugai, Novartis, Otsuka, Janssen, Astellas-Amgen; honoraria from Celgene, Ono, BMS, Takeda, Sanofi. HG, WN, CT, HY, HZ: employment and equity with BeiGene Ltd.

MoTa: employment and equity with BeiGene USA; Ended employment in the past 24 months at Varian Medical Systems; travel, accommodations, and expenses paid for by BeiGene USA.

JZ: employment and equity with BeiGene (Shanghai), Co. Ltd.

KI: consultancy with BeiGene, AstraZeneca, Ono Pharmaceutical, AbbVie, Novartis, Chugai; research funding from MSD, AstraZeneca, AbbVie, Eizai, Incyte, Janssen, Yakult, Kyowa Kirin, Ono Pharmaceutical, Daiichi Sankyo, Chugai, BeiGene, Genmab, Loxo Oncology; honoraria from Eizai, Chugai, Janssen, AstraZeneca, Novartis, BMS, Kyowa Kirin, AbbVie, Ono Pharmaceutical, Eli Lilly, MSD, Daiichi Sankyo, Symbio, Takedas.

TI, MaTa, KK, KF, TF, KN, SKu, TJ, SKa, TN: nothing to disclose.

CORRESPONDENCE

Takayuki Ishikawa, MD. PhD Kobe City Medical CEnter General Hospital Kobe, Japan ishikawa@kcho.jp

ACKNOWLEDGMENTS

We would like to thank the investigators, site support staff, and especially the patients for participating in this study. We would also like to thank Bilal Tariq, PharmD, MS for supporting the analysis of pharmacokinetics related to the presentation.

This study was sponsored by BeiGene. Editorial support was provided by Bio Connections LLC and funded by BeiGene

permission from ASH® and the authors of this poster.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without

