## XXXZJAZD POLSKIEGO TOWARZYSTWA HEMATOLOGÓW I TRANSFUZJOLOGÓW



POLSKIE TOWARZYSTWO HEMATOLOGÓW ITRANSFUZJOLOGÓW

#### 8-10 września 2022 r., Bydgoszcz



## First Interim Analysis of ALPINE Study: Results of a Phase 3 Randomized Study of Zanubrutinib vs Ibrutinib in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

**Wojciech Jurczak**<sup>1</sup>, Barbara Eichhorst<sup>2</sup>, Jennifer J. Brown<sup>3</sup>, Nicole Lamanna<sup>4</sup>, Susan O'Brien<sup>5</sup>, Constantine S. Tam<sup>6,7</sup>, Lugui Qiu<sup>8</sup>, Maciej Kazmierczak<sup>9</sup>, Keshu Zhou<sup>10</sup>, Martin Šimkovič<sup>11,12</sup>, Jiri Mayer<sup>13</sup>, Amanda Gillespie-Twardy<sup>14</sup>, Mazyar Shadman<sup>15,16</sup>, Alessandra Ferrajoli<sup>17</sup>, Peter S. Ganly<sup>18,19</sup>, Robert Weinkove<sup>20,21</sup>, Tommi Salmi<sup>22</sup>, Kenneth Wu<sup>22</sup>, Peter Hillmen<sup>23</sup>

<sup>1</sup>Maria Sklodowska-Curie National Institute of Oncology, Cracovie, Poland; <sup>2</sup>Department of Internal Medicine, Université de Cologne, Cologne, Germany; <sup>3</sup>Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; <sup>4</sup>Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA ; <sup>5</sup>Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; <sup>6</sup>The Alfred Hospital, Melbourne, VIC, Australia; <sup>7</sup>Monash University, Clayton, VIC, Australia; <sup>8</sup>Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China; <sup>9</sup>Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland; <sup>10</sup>Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; <sup>11</sup>4th Department of Internal Medicine - Hematology, University Hospital, Hradec Kralove, Czech Republic; <sup>12</sup>Faculty of Medicale, Charles University, Prague, Czech Republic; <sup>13</sup>Department of Internal Medicine-Hematology and Oncology, Masaryk University and University Hospital, Brno, Czech Republic; <sup>14</sup>Blue Ridge Cancer Care, Roanoke, VA, USA; <sup>15</sup>Fred Hutchinson Cancer Research Center, Seattle, WA, USA; <sup>16</sup>Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; <sup>20</sup>Wellington Blood and Cancer Centre, Capital and Coast District Health Board, Wellington, New Zealand; <sup>21</sup>Malaghan Institute of Medical Research, Wellington, New Zealand; <sup>22</sup>BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene USA, Inc., San Mateo, CA, USA; <sup>23</sup>St James's University Hospital, Leeds, UK



## **Disclosures for Wojciech Jurczak**

Research funding from AbbVie, AstraZeneca, BeiGene, Celgene, Debbiopharm, Epizyme, Incyte, Janssen, Merck, Roche, Takeda, and TG Therapeutics.

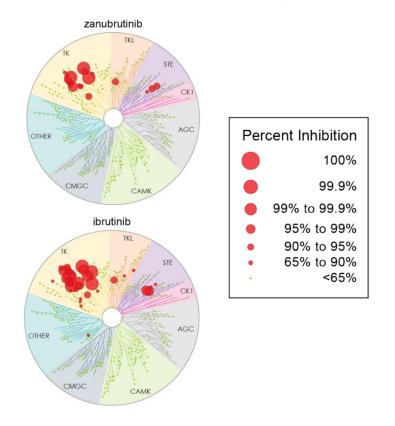


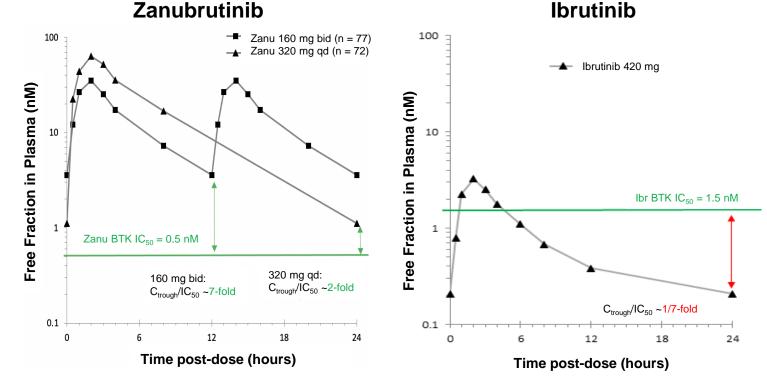
## Background

- Treatment of CLL/SLL has been transformed with the advent of effective inhibitors of B-cell receptor signaling<sup>1,2</sup>, such as the BTK inhibitor ibrutinib<sup>3,4</sup>
- Zanubrutinib is an irreversible, potent, next-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target inhibition of TEC and EGFR family kinases<sup>5</sup>
- We hypothesized that zanubrutinib may minimize toxicities related to ibrutinib off-target inhibition<sup>6</sup> and zanubrutinib<sup>5</sup> may improve efficacy outcomes

BTK, Bruton tyrosine kinase; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; EGFR, epidermal growth factor receptor.

<sup>1.</sup> Aalipour A, et al. Br J Haematol. 2013;163(4):436-443; 2. ten Hacken E, et al. Clin Cancer Res. 2014;20(3):548-556; 3. Imbruvica® (ibrutinib) [package insert]. Janssen Biotech, Inc; 2019; 4. Imbruvica® (ibrutinib) [SPC]. Janssen-Cilag International NV; 2018; 5. Tam C, et al. Blood. 2019;134(11):851-859; 6. Coutre S, et al. Blood Adv. 2019;3(12):1799-1807.


```
XXX ZJAZD
POLSKIEGO TOWARZYSTWA
HEMATOLOGÓW I TRANSFUZJOLOGÓW
8-10 września 2022 r.
```




## Pharmacokinetics and Selectivity of Zanubrutinib and Ibrutinib

Whole Kinase Panel Selectivity Profiles

Free Drug Concentration Time Profiles Relative to IC<sub>50</sub>



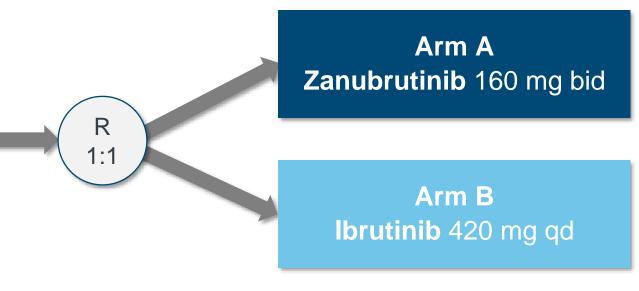


Note: These data are from separate analyses. Limitations of cross-trial comparisons apply.

 Zanubrutinib has shown less off-target kinase inhibition, more potent BTK inhibition, and a longer time profile of free drug concentration, compared with ibrutinib



# ALPINE: Phase 3, Randomized Study of Zanubrutinib vs Ibrutinib in Patients with Relapsed/Refractory CLL or SLL


#### R/R CLL/SLL with ≥ 1 prior treatment (Planned N = 600, Actual N = 652)

#### **Key Inclusion Criteria**

- R/R to ≥ 1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

#### **Key Exclusion Criteria**

- Current or past Richter's transformation
- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists



#### **Stratification Factors**

- Age
- Geographic region
- Refractory status
- del(17p)/TP53 mutation status

bid, twice daily; BTK, Bruton tyrosine kinase; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; CT, computed tomography; del(17p), chromosome 17p deletion; MRI, magnetic resonance imaging; qd, once daily; R, randomized; R/R, relapsed/refractory; *TP53*, gene encoding tumor protein p53.



## **Baseline Patient and Disease Characteristics**

| Characteristic                          | Zanubrutinib (n = 207) | lbrutinib (n = 208) |
|-----------------------------------------|------------------------|---------------------|
| Age, median (range), years              | 67 (35, 90)            | 67 (36, 89)         |
| Age ≥ 65 years, n (%)                   | 129 (62.3)             | 128 (61.5)          |
| Male, n (%)                             | 142 (68.6)             | 156 (75.0)          |
| Disease stage, n (%)                    |                        |                     |
| Binet stage A/B or Ann Arbor stage I/II | 122 (58.9)             | 124 (59.6)          |
| Binet stage C or Ann Arbor stage III/IV | 85 (41.1)              | 84 (40.4)           |
| ECOG PS ≥ 1, n (%)                      | 128 (61.8)             | 132 (63.5)          |
| Prior lines of therapy, median (range)  | 1 (1-6)                | 1 (1-8)             |
| > 3 prior lines, n (%)                  | 15 (7.3)               | 21 (10.1)           |
| Prior chemoimmunotherapy, n (%)         | 166 (80.2)             | 158 (76.0)          |
| del(17p) and/or mutant TP53, n (%)      | 41 (19.8) <sup>a</sup> | 38 (18.3)           |
| del(17p), n (%)                         | 24 (11.6)              | 26 (12.5)           |
| TP53 mutated, n (%)                     | 29 (14.0) <sup>a</sup> | 24 (11.5)           |
| del(11q), n (%)                         | 61 (29.5)              | 55 (26.4)           |
| Bulky disease (≥ 5 cm), n (%)           | 106 (51.2)             | 105 (50.5)          |

- Treatment arms were well balanced for demographic and disease characteristics
- 11.6% in the zanubrutinib arm compared with 12.5% in the ibrutinib arm had del(17p)

<sup>a</sup>2 patients with missing values.

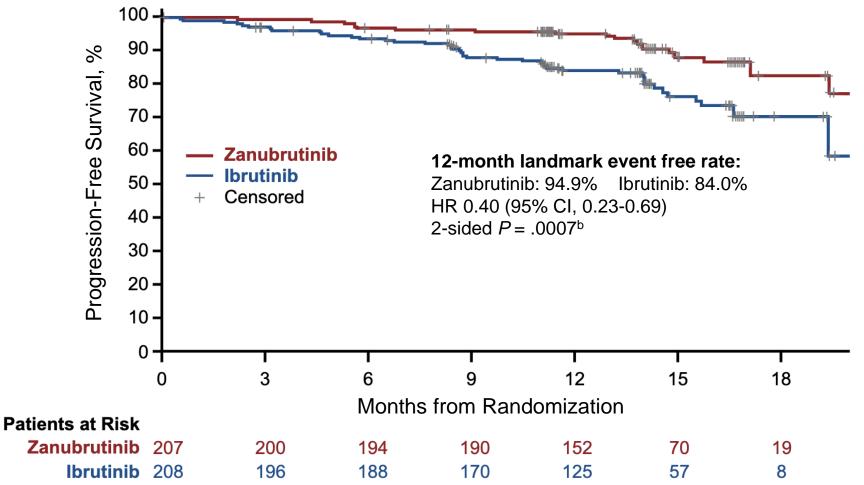
del(17p), chromosome 17p deletion; del(11q), chromosome 11q deletion; ECOG PS, Eastern Cooperative Oncology Group performance status; TP53, gene encoding tumor protein p53.



## **ORR by Investigator Assessment**

|                                                     | Zanubrutinib (n = 207), n (%)                                              | lbrutinib (n = 208), n (%)                |
|-----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|
| Primary endpoint:<br>ORR (PR + CR)                  | 162 ( <b>78.3</b> )<br>95% CI: 72.0, 83.7                                  | 130 ( <b>62.5</b> )<br>95% CI: 55.5, 69.1 |
|                                                     | Superiority 2-sided $P = .0006$ compared with pre-specified alpha of .0099 |                                           |
| CR/CRi                                              | 4 (1.9)                                                                    | 3 (1.4)                                   |
| nPR                                                 | 1 (0.5)                                                                    | 0                                         |
| PR                                                  | 157 (75.8)                                                                 | 127 (61.1)                                |
| ORR (PR-L + PR + CR)                                | 183 (88.4)                                                                 | 169 (81.3)                                |
| PR-L                                                | 21 (10.1)                                                                  | 39 (18.8)                                 |
| SD                                                  | 17 (8.2)                                                                   | 28 (13.5)                                 |
| PD                                                  | 1 (0.5)                                                                    | 2 (1.0)                                   |
| Discontinued or new therapy prior to 1st assessment | 6 (2.9)                                                                    | 9 (4.3)                                   |

|               | del(17p) (n = 24), n (%) | del(17p) (n = 26), n (%) |
|---------------|--------------------------|--------------------------|
| ORR (PR + CR) | 20 (83.3)                | 14 (53.8)                |


- After a median follow-up of 15 months, ORR was significantly higher with zanubrutinib (78.3%) vs ibrutinib (62.5%)
- In the subset of patients with del(17p), ORR was even higher for zanubrutinib (83.3%) vs ibrutinib (53.8%)

Cl, confidence interval; CR, complete response; CRi, complete response with incomplete bone marrow recovery; del(17p), chromosome 17p deletion; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease.

XXX ZJAZD **KIEGO TOWARZYSTWA** IATOLOGÓW I TRANSFUZJOLOGÓW 8-10 września 2022 r.



## **PFS by Investigator Assessment**<sup>a</sup>

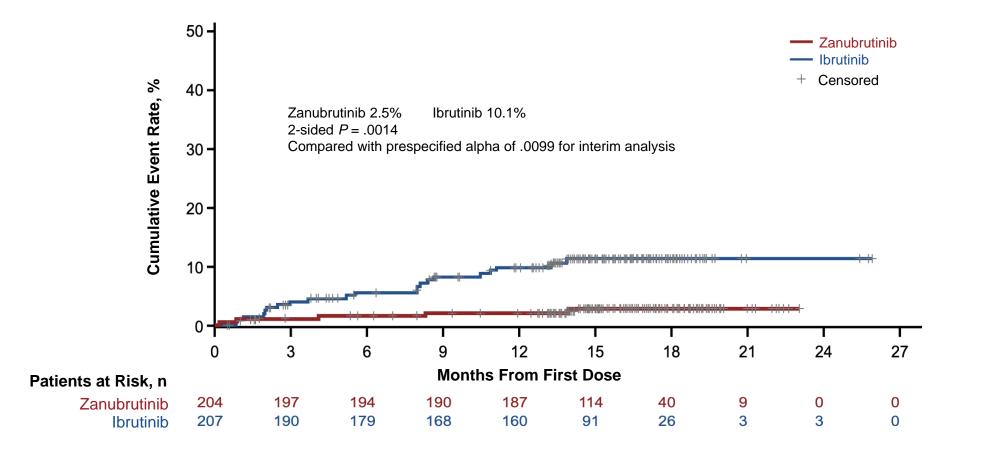


 With a median PFS follow-up time of 14 months, the investigator-assessed 12-month PFS was 94.9% for the zanubrutinib arm and 84% for the ibrutinib arm (2-sided P = .0007) through the cut-off date

<sup>a</sup>Median PFS follow-up was 14.0 months for both zanubrutinib and ibrutinib arms by reverse KM method; <sup>b</sup>Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events are reached. CI, confidence interval; HR, hazard ratio; KM, Kaplan-Meier; PFS, progression-free survival.



## Safety Summary


| Safety Analysis Population, n (%)        | Zanubrutinib<br>(n = 204) | lbrutinib<br>(n = 207) |
|------------------------------------------|---------------------------|------------------------|
| Any AE                                   | 195 (95.6)                | 205 (99.0)             |
| Any grade ≥ 3 AE                         | 114 (55.9)                | 106 (51.2)             |
| Serious AEs                              | 56 (27.5)                 | 67 (32.4)              |
| Fatal AEs                                | 8 (3.9)                   | 12 (5.8)               |
| AEs leading to dose reduction            | 23 (11.3)                 | 25 (12.1)              |
| AEs leading to dose interruption         | 81 (39.7)                 | 84 (40.6)              |
| AEs leading to treatment discontinuation | 16 (7.8)                  | 27 (13.0)              |

- Most patients experienced an AE, regardless of treatment arm
- Serious or fatal AEs were numerically higher in the ibrutinib vs the zanubrutinib arm
- The rate of AEs leading to treatment discontinuation was lower with zanubrutinib

XXX ZJAZD TOWARZYSTWA TOLOGÓW I TRANSFUZJOLOGÓW 8-10 września 2022 r.



## **Atrial Fibrillation/Flutter**



• Atrial fibrillation and flutter were more frequently reported with ibrutinib (10.1%) vs zanubrutinib (2.5%); the rate was consistently higher in the ibrutinib arm over time





## Conclusions

- In this interim analysis of a randomized, phase 3 ALPINE study in patients with relapsed/refractory CLL/SLL, zanubrutinib compared with ibrutinib, was shown to have:
  - A superior response rate
  - An improved PFS
  - A lower rate of atrial fibrillation/flutter
- These data support that more selective BTK inhibition, with more complete and sustained BTK occupancy results in improved efficacy and safety outcomes





## **Acknowledgments**

We would like to thank the investigators, site support staff, and especially the patients and their caregivers for participating in this study. Participating countries: Australia, China, New Zealand, Belgium, Czech Republic, France, Germany, Italy, Poland, Spain, Sweden, The Netherlands, Turkey, United Kingdom and United States.

This study was sponsored by BeiGene.

Editorial support was provided by Medical Expressions and funded by BeiGene.

Correspondence: wojciech.jurczak@lymphoma.edu.pl