SEQUOIA: Results of a Phase 3 Randomized Study of Zanubrutinib versus Bendamustine + Rituximab in Patients with Treatment-Naive Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

Brad S. Kahl¹, Krzysztof Giannopoulos²³, Wojciech Jurczak⁴, Martin Šimkovič⁵⁶, Mazyar Shadman⊓, Richard Greil¹¹¹, Patricia Walker¹², Stephen Opat¹³¹, Hanna Ciepluch¹⁶, Richard Greil¹¹¹¹, Patricia Walker¹², Stephen Opat¹³¹, Hanna Ciepluch¹⁶, Richard Greil¹¹²¹, Monica Tani²⁰, Luca Laurenti¹¹, Patricia Walker¹², Ian W. Flinn²³, Lei Zhou³⁰, Carol Marimpietri³⁰, Jason C. Paik³⁰, Aileen Cohen³⁰, Tadeusz Robak³¹, Peter Hillmen³², Constantine S. Tam^{14,33}

the strail of Seattle, Wa, USA; Experiment of Internal Medicine, Charles University, Prague, Czech Republic; Faculty of Medicine, University, Prague, Czech Republic; Fourth Department of Internal Medicine, University, Prague, Czech Republic; Faculty of Medicine, University of Medicine, University, Prague, Czech Republic; Faculty of Medicine, University of Medicine, University, Prague, Czech Republic; Faculty of Medicine, University, Prague, Czech Republic; Faculty of Medicine, University of Medicine, University, Prague, Czech Republic; Faculty of Medicine, University of Medicine, University, Prague, University of Medicine, University of Me <text> <text> <text> ³⁰BeiGene (Beijing) Co., Ltd., Beijing, China, and BeiGene USA, Inc., San Mateo, CA, USA; ³¹Medical University of Lodz, Poland; ³²St James's University Hospital, Leeds, UK; ³³The Alfred Hospital, Melbourne, VIC, Australia

0.42 (0.28-0.63)

0.47 (0.30-0.74)

0.39 (0.24-0.64)

INTRODUCTION

- Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are progressive B-cell malignancies that are characterized by progressive accumulation of leukemic cells in the peripheral blood, bone marrow, and lymphoid tissue¹
- In recent years, treatment of CLL/SLL has been transformed with the advent of effective inhibitors of B-cell receptor signaling, such as the BTK inhibitor, ibrutinib²
- Ibrutinib has well-described off-target effects that may contribute to its toxicity profile, notably an increased risk for cardiovascular disease, including atrial fibrillation, hypertension, and hemorrhage³
- Cardiovascular adverse events (AEs), diarrhea, and rash observed in patients treated with ibrutinib have been associated with off-target inhibition of kinases such as EGFR, HER, and TEC³
- Zanubrutinib is an irreversible, potent, next-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target inhibition of TEC- and EGFR-family kinases^{4,5}
- Efficacy and safety of zanubrutinib have been recently demonstrated in 2 large, randomized studies in Waldenström macroglobulinemia and relapsed/refractory CLL/SLL, with lower rates of atrial fibrillation when compared to ibrutinib^{6,7}
- Preliminary data showing high response rates with zanubrutinib in untreated patients with the high-risk genomic abnormality, del(17p), enrolled in SEQUOIA cohort 2, have been recently published^{8,9}
- Here, we present results from the first cohort of SEQUOIA, a phase 3 trial of zanubrutinib versus bendamustine + rituximab (B+R) as first-line treatment for CLL/SLL

METHODS

- SEQUOIA (BGB-3111-304; NCT03336333) is an international, randomized, open-label, phase 3 study of zanubrutinib compared with B+R treatment for patients with previously untreated CLL/SLL
- Eligible patients had received no prior systemic treatment for CLL/SLL, met International Workshop on CLL (iwCLL) criteria for treatment, and were unsuitable for treatment with fludarabine, cyclophosphamide, and rituximab (ie, ≥65 years of age, Cumulative Illness Rating Scale score >6, creatinine clearance < 70 mL/min, and/or history of previous severe infection or multiple infections within the past 2 years)
- Cohort assignment was based on centrally-verified del(17p) status
- In Cohort 1, study patients without del(17p) were randomized to receive either zanubrutinib 160 mg twice daily until progressive disease or unacceptable toxicity or bendamustine 90 mg/m² (days 1 and 2) + rituximab (375 mg/m² for cycle 1, then 500 mg/m² for cycles 2-6) for 6 cycles of 28-days each
- Randomization stratification factors included age (<65 y vs ≥65 y), Binet Stage (C vs A/B), immunoglobulin heavy chain gene (IGHV) mutational status (mutated vs unmutated), and geographic region (North America vs Europe vs Asia-Pacific)
- Patients with del(17p) were assigned to Cohort 2 and received zanubrutinib monotherapy

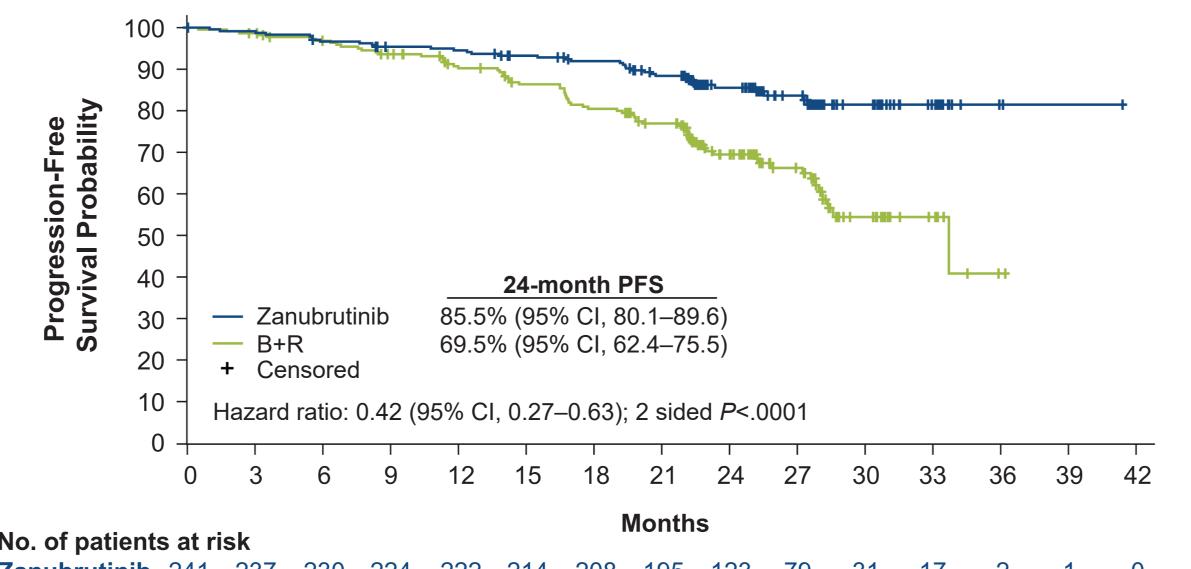
- The primary endpoint was progression-free survival (PFS) in Cohort 1 as assessed by independent review committee (IRC) per modified iwCLL criteria for CLL and Lugano criteria for SLL
- The comparison of PFS between the 2 arms in Cohort 1 was based on a log-rank test stratified by the randomization stratification factors of age, Binet stage, and IGHV mutational status; hazard ratios (HRs) and 2-sided 95% confidence intervals (Cls) were estimated from a stratified Cox regression model
- Key secondary endpoints included PFS by investigator assessment, overall response rate (ORR) by investigator and IRC assessments, overall survival (OS), and safety
- Adverse events (AEs) were assessed and graded per the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) v4.03 and the Grading Scale for Hematologic Toxicities in CLL Studies

RESULTS

- From October 31, 2017 to July 22, 2019, 479 patients without del(17p) were randomized to receive zanubrutinib (n=241) and B+R (n=238)
- At the data cutoff, 206/240 patients from Cohort 1 were continuing to receive zanubrutinib; in Cohort 2, 188/227 patients completed the B+R regimen and 15 patients crossed over to receive zanubrutinib after centrally-confirmed disease progression
- Treatment groups were well balanced for demographic and disease characteristics; in both arms, the median patient age was 70 years and most patients were men (**Table 1**)
- In the zanubrutinib arm, 53.4% had unmutated IGHV and 17.8% had del(11g) compared with 52.4% and 19.3%, respectively, in the B+R arm

Table 1. Baseline Patient and Disease Characteristics

	Zanubrutinib	B+R			
Characteristics	(n=241)	(n=238)			
Age, median (IQR), years	70 (66–75)	70 (66–74)			
Age ≥65, n (%)	196 (81.3)	192 (80.7)			
Male, n (%)	154 (63.9)	144 (60.5)			
ECOG PS 2, n (%)	15 (6.2)	20 (8.4)			
Geographic region, n (%)					
North America	34 (14.1)	28 (11.8)			
Europe	174 (72.2)	172 (72.3)			
Asia/Pacific	33 (13.7)	38 (16.0)			
Binet stage C,ª n (%)	70 (29.0)	70 (29.4)			
Bulky disease ≥5 cm, n (%)	69 (28.6)	73 (30.7)			
Cytopenia at baseline, ^b n (%)	102 (42.3)	109 (45.8)			
Unmutated <i>IGHV</i> gene, n/N (%)	125/234 (53.4)	121/231 (52.4)			
del(11q), n (%)	43 (17.8)	46 (19.3)			
TP53 mutation, n/N (%)	15/232 (6.5)	13/223 (5.8)			

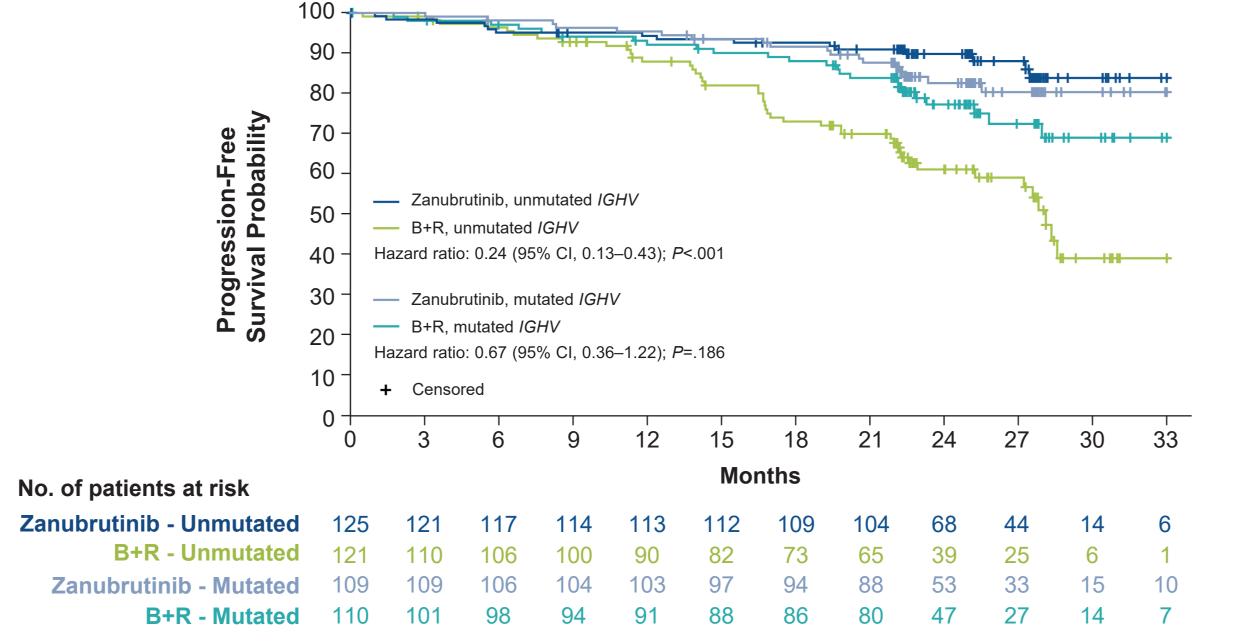

B+R, bendamustine + rituximab; CLL, chronic lymphocytic leukemia; del(11q), chromosome 11q deletion; ECOG PS, Eastern Cooperative Oncology Group performance status IQR, interquartile range; IGHV, gene encoding the immunoglobulin heavy chain variable region; SLL, small lymphocytic lymphoma; TP53, gene encoding tumor protein p53.

- At median follow-up (26.2 months), PFS was significantly prolonged with zanubrutinib treatment vs B+R by IRC assessment (HR, 0.42; 95% Cl, 0.28–0.63; 2-sided *P*<.0001; **Figure 1A**)
- Similar PFS was observed by investigator assessment (HR, 0.42; 95% Cl, 0.27–0.66; 2-sided *P*=.0001) Estimated 24-month PFS by IRC assessment for zanubrutinib vs B+R was 85.5% vs 69.5%, respectively

 Zanubrutinib treatment benefit was observed across patient subgroups defined by age, Binet stage, bulky disease, and del(11q) status (**Figure 1B**) and for patients with unmutated IGHV (HR, 0.24; 2-sided P<.0001), but not for mutated *IGHV* (HR, 0.67; 2-sided *P*=.1858; **Figure 1C**)

Figure 1A. PFS per IRC Assessment

Figure 1B. PFS by Patient Subgroup


B+R, bendamustine + rituximab; IRC, independent review committee; PFS, progression-free survival.

Hazard Ratio (95% CI), %a 36/241 71/238 —— 52/192 47/144 24/154 19/70

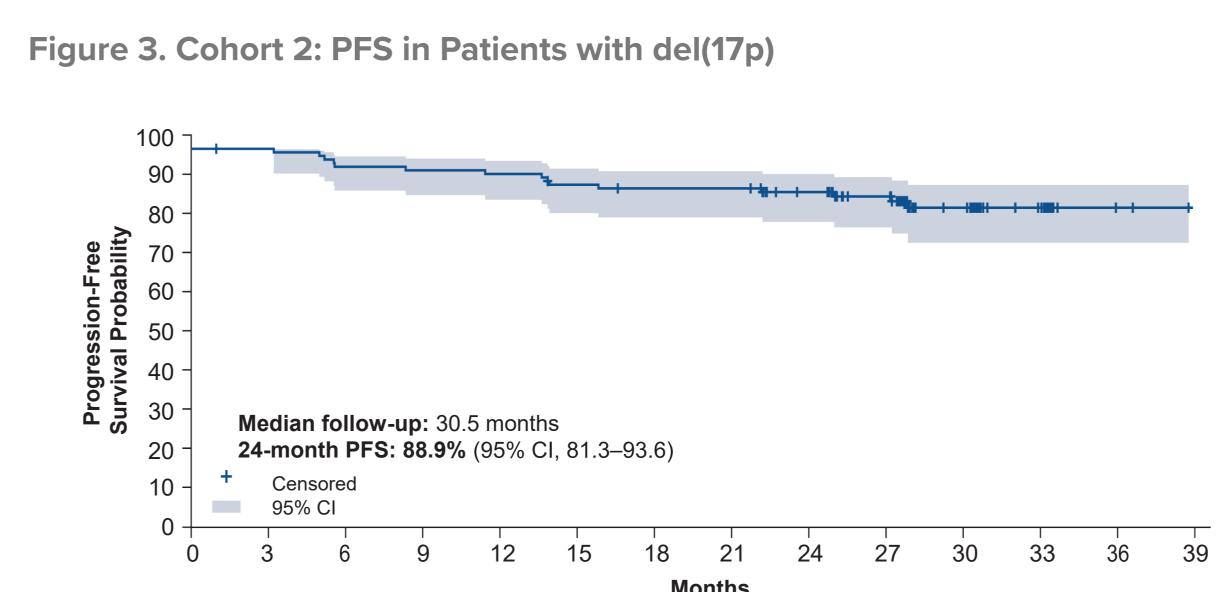
0.45 (0.23-0.91) 0.39 (0.24-0.64) 0.48 (0.23-1.00) 0.39 (0.19-0.78) 0.43 (0.26-0.71) 24/131 Bulky disease (LDi <5 cm vs ≥5 cm) 0.37 (0.22-0.63) 0.52 (0.27-0.97) IGHV mutational status 0.67 (0.36-1.22) 45/121 — Cytopenias at baselineb 0.55 (0.32-0.95) 34/109 15/139 37/129 0.31 (0.17-0.57) 0.21 (0.09-0.50) 22/46 29/198 49/192 0.50 (0.32-0.80)

^aHazard ratios were calculated using a stratified Cox regression model. ^bDefined as having anemia (hemoglobin ≤110 g/L) or thrombocytopenia (platelets ≤100×10⁹/L) or neutropenia B+R, bendamustine + rituximab; ECOG PS, Eastern Cooperative Oncology Group performance status; IGHV, gene encoding the immunoglobulin heavy chain variable region; IRC, independe review committee; LDi, longest diameter; PFS, progression-free survival.

Figure 1C. PFS by IGHV Status

B+R, bendamustine + rituximab; *IGHV*, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee; PFS, progression-free survival.

- For zanubrutinib vs B+R:
- ORR by IRC was 94.6% vs 85.3% and the complete response rate was 6.6% vs 15.1%
- ORR by investigator assessment was 97.5% vs 88.7%
- Estimated 24-month OS was 94.3% vs 94.6% (Figure 2)


Figure 2. Overall Survival

B+R 238 222 217 212 210 209 208 198 141 84 41 16 4

Median follow-up: 26.2 months. B+R, bendamustine + rituximab.

No. of patients at risk

del(17p), chromosome 17p deletion; PFS, progression-free survival.

- The proportion of patients that experienced any AE was similar in the zanubrutinib (93.3%) and B+R (96.0%) arms (Table 2); Grade 3 AEs occurred in a higher percentage of patients in the B+R arm (79.7%) vs the zanubrutinib arm (52.5%)
- For the zanubrutinib vs B+R arm, treatment discontinuation due to AEs occurred in 8.3% vs 13.7% of patients, respectively; AEs leading to death occurred in 4.6% vs 4.8%, respectively
- AEs of special interest were observed at the following frequencies in the zanubrutinib vs B+R arm, respectively (**Table 4**):
- Atrial fibrillation (any grade): 3.3% vs 2.6%
- Bleeding (any grade) 45.0% vs 11.0%; bleeding (Grade ≥3): 3.8% vs 1.8%
- Hypertension (any grade): 14.2% vs 10.6%
- Infections (any grade): 62.1% vs 55.9%; infections (Grade ≥3): 16.3% vs 18.9% Neutropenia (any grade): 15.8% vs 56.8%; neutropenia (Grade ≥3): 11.7% vs 51.1%

Table 2. Adverse Event Summary

224 (93.3) 126 (52.5) 88 (36.7)	218 (96.0) 181 (79.7) 113 (49.8)
<u> </u>	
88 (36.7)	113 (49.8)
11 (4.6)	11 (4.8)
18 (7.5)	84 (37.4)
111 (46.3)	154 (67.8)
20 (8.3)	31 (13.7)
	111 (46.3)

Table 3 Common Adverse Events (>12% of Patients in Any Arm)

Table 3. Common Adverse Events (≥12% of Patients in Any Arm)							
Z		rutinib 40°)	B+R (n=227°)				
AE, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3			
Contusion	46 (19.2)	O (O.O)	8 (3.5)	O (O.O)			
Upper respiratory tract infection	41 (17.1)	2 (0.8)	27 (11.9)	2 (0.9)			
Neutropenia ^b	37 (15.4)	27 (11.3)	129 (56.8)	116 (51.1)			
Diarrhea	33 (13.8)	0 (0.0)	30 (13.2)	4 (1.8)			
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)			
Fatigue	28 (11.7)	3 (1.3)	36 (15.9)	2 (0.9)			
Rash	26 (10.8)	0 (0.0)	44 (19.4)	6 (2.6)			
Constipation	24 (10.0)	1 (0.4)	43 (18.9)	0 (0.0)			
Nausea	24 (10.0)	O (O.O)	74 (32.6)	3 (1.3)			
Pyrexia	17 (7.1)	O (O.O)	60 (26.4)	8 (3.5)			
Vomiting	17 (7.1)	0 (0.0)	33 (14.5)	3 (1.3)			
Anemia	11 (4.6)	1 (0.4)	43 (18.9)	4 (1.8)			
Thrombocytopenia	9 (3.8)	4 (1.7)	31 (13.7)	16 (7.0)			
Infusion-related reaction	1 (0.4)°	0 (0.0)	43 (18.9)	6 (2.6)			

Safety was assessed in patients who received ≥1 dose of treatment; 1 patient in the zanubrutinib arm and 11 patients in the B+R arm did not receive treatment. ^bPooled term with neutrophil count decreased. ^cDue to amphotericin B infusion. AE, adverse event; B+R, bendamustine + rituximab.

AE, adverse event; B+R, bendamustine + rituximab.

Table 4. Adverse Events of Interest

AE, n (%)		Zanubrutinib (n=240ª)		B+R (n=227ª)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Anemia	11 (4.6)	1 (0.4)	44 (19.4)	4 (1.8)	
Neutropenia ^b	38 (15.8)	28 (11.7)	129 (56.8)	116 (51.1)	
Thrombocytopeniac	11 (4.6)	5 (2.1)	40 (17.6)	18 (7.9)	
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)	
Atrial fibrillation	8 (3.3)	1 (0.4)	6 (2.6)	3 (1.3)	
Bleeding ^d	108 (45.0)	9 (3.8)	25 (11.0)	4 (1.8)	
Major bleeding ^e	12 (5.0)	9 (3.8)	4 (1.8)	4 (1.8)	
Diarrhea	33 (13.8)	2 (0.8)	31 (13.7)	5 (2.2)	
Hypertension ^f	34 (14.2)	15 (6.3)	24 (10.6)	11 (4.8)	
Infections ^g	149 (62.1)	39 (16.3)	127 (55.9)	43 (18.9)	
Myalgia	9 (3.8)	0 (0.0)	3 (1.3)	0 (0.0)	
Other cancers	31 (12.9)	17 (7.1)	20 (8.8)	7 (3.1)	
Dermatologic other cancers	16 (6.7)	2 (0.8)	10 (4.4)	2 (0.9)	

CONCLUSIONS

- In this global registrational trial, zanubrutinib demonstrated statistically significant improvement in PFS compared with B+R as assessed by IRC
- Superiority was also observed in PFS by investigator assessment and in ORR by both IRC and investigator assessments
- Zanubrutinib was well tolerated, with low rates of atrial fibrillation These data support the potential utility of zanubrutinib in the
- frontline management of patients with previously untreated CLL/SLL

REFERENCES

- 1. Zelenetz AD, et al. J Natl Compr Canc Netw. 2015;13:326-36 2. Scheffold A and Stilgenbauer S. Curr Oncol Rep. 2020;22:16
- 6. Tam CS, et al. *Blood*. 2020:146:2038-2050. 7. Hillmen P. et al. EHA 2021. Abstract LB1900. 3. Estupiñán HY, et al. Front Cell Dev Biol. 2021;9:630942 8. Tam CS, et al. *Haematologica*. 2020;106:2354-2363.
- 4. Guo Y, et al. *J Med Chem*. 2019;62:7923-7940. 9. Brown JR, et al. *Blood*. 2020;136(suppl 1):11-12. 5. Tam CS, et al. *Blood*. 2019;134:851-859.

CORRESPONDENCE

ACKNOWLEDGMENTS We would like to thank the SEQUOIA investigators, site support staff, and especially the patients for participating in this study. We also would like to thank

Vanitha Ramakrishnan, Maria Salaverri, Sowmya Kuwahara, Fangfang Yin, Andy Szeto, and Axel Gayko for their contributions to biomarker analysis, operational support, and data analysis. This study was sponsored by BeiGene. Editorial support was provided by Medical Expressions and was funded by BeiGene.

BSK: consultant for Genentech, ADCT, AbbVie, AstraZeneca, BeiGene, Pharmacyclics, BMS, TG Therapeutics, Teva, Janssen, MEI; research funding from Genentech ADCT, AbbVie, Acerta, AstraZeneca, BeiGene KG: consultant for AbbVie, Amgen, AstraZeneca, BeiGene, Janssen, Sanofi-Genzyme, Novartis, Takeda, Roche, Karyopharm, GSK, Sandoz; research funding from AbbVie, Amgen, AstraZeneca, BeiGene, Janssen, Sanofi-Genzyme, Novartis, Takeda, Roche, Gilead, TG Therapeutics; honoraria from AbbVie, Amgen, AstraZeneca,

committee for Polish Myeloma Consortium, Next Generation Hematology Association. WJ: research funding from AbbVie, AstraZeneca, BeiGene, Celgene, Debbiopharm, Epizyme, Incyte, Janssen, Merck, Roche, Takeda, TG Therapeutics.

BeiGene, Janssen, Sanofi-Genzyme, Novartis, Takeda, Roche, Karyopharm, GSK, Gilead, Sandoz, Pfizer, Teva; member of the board of directors or of the advisory

MŠimkovič: consultant for AbbVie, AstraZeneca, Janssen-Cilag; shareholder for AbbVie, Merck, Eli Lilly, J&J; honoraria from AbbVie, Janssen-Cilag; member of the poard of directors or of the advisory committee for AbbVie, AstraZeneca; travel fees from Gilead, Janssen-Cilag, AbbVie. harma. Kite Pharma. Adaptive Biotechnologies. Epizyme. Eli Lilly, and Atara Biotherapeutics. Adaptimmune: research funding for Mustang Bio. Celgene. Bristol Myers Squibb, Pharmacyclics, Gilead, Genentech, AbbVie, TG Therapeutics, BeiGene, AstraZeneca, Sunesis, Atara Biotherapeutics, GenMab; member of the board

f directors or of the advisory committee for AbbVie, Genentech, AstraZeneca, Sound Biologics, Pharmacyclics, BeiGene, Bristol Myers Squibb, Morphosys, TG herapeutics, Innate Pharma, Kite Pharma, Adaptive Biotechnologies, Epizyme, Eli Lilly, and Atara Biotherapeutics, Adaptimmune AÖ: research funding from BeiGene, Gilead.

LL: research funding from Roche, AbbVie; honoraria from AbbVie, Roche, BeiGene, Janssen, AstraZeneca

PW: consultant for BeiGene, Acerta.

SO: consultant for AbbVie, AstraZeneca, Janssen, Roche; research funding from AbbVie, AstraZeneca, BeiGene, Gilead, Janssen, Pharmacyclics, Roche, Sandoz, Takeda; honoraria from AbbVie, AstraZeneca, Celgene, CSL Behring, Gilead. Janssen, Merck, Roche, Takeda HChan: speaker's bureau for Janssen, Roche; member of the board of directors or of the advisory committee for Janssen, AbbVie, Eusa, GSK; travel fees from

RG: consultant for Celgene, Novartis, Roche, BMS, Takeda, AbbVie, AstraZeneca, Janssen, MSD Merck, Gilead, Daiichi Sankyo, Sanofi; research funding for Celgene, Roche, Merck, Takeda, AstraZeneca Novartis, Amgen, BMS, MSD, Sandoz, AbbVie Gilead, Daiichi Sankyo; honoraria for Celgene, Roche, Merck, Takeda, AstraZeneca Novartis, Amgen, BMS, MSD, Sandoz, AbbVie, Gilead, Daiichi Sankyo, Sanofi; member of the board of directors or of the advisory committee for

Celgene, Novartis, Roche, BMS, Takeda, AbbVie, AstraZeneca, Janssen, MSD Merck, Gilead, Daiichi Sankyo, Sanofi; travel fees from Roche, Amgen, Janssen AstraZeneca, Novartis, MSD, Celgene, Gilead, BMS, AbbVie, Daiichi Sankyo. MTrněný: consultant for Janssen, Gilead Sciences, Takeda, Bristol Myers Squibb, Amgen, AbbVie, Roche, MorphoSys, Incyte, Novartis; honoraria from Janssen, Gilead Sciences, Bristol-Myers Squibb, Amgen, AbbVie, Roche, AstraZeneca, MorphoSys, Incyte, Portolla, Takeda, Novartis; member of the board of directors or

of the advisory committee for Janssen, Takeda, Roche, Bristol Myers Squibb, AbbVie, Portolla, MorphoSys, Incyte, Novartis; travel fees from Gilead, Takeda, Bristol Myers Squibb, Roche, Janssen, AbbVie. DMB: consultant for AbbVie, Genentech, Pharmacyclics, Pfizer, TG Therapeutics, Verastem; research funding from AbbVie, ArQule, Ascentage, AstraZeneca,

BeiGene, DTRM, Genetech, Juno/Celgene/BMS, LOXO, MEI Pharma, Novartis, Pharmacyclics, TG Therapeutics; panel member for NCCN IWF: consultant for AbbVie, AstraZeneca, BeiGene, Century Therapeutics, Genentech, Gilead Sciences, Great Point Partners, Hutchison MediPharma, Iksuda herapeutics, Janssen, Juno Therapeutics, Kite Pharma, MorphoSys, Novartis, Nurix Therapeutics, Pharmacyclics, Roche, Seattle Genetics, Servier Pharmaceuticals akeda, TG Therapeutics, Unum Therapeutics, Verastem, Vincerx Pharma, Yingli Pharmaceuticals; all payments made to Sarah Cannon Research Institute

TG Therapeutics, Trillium Therapeutics, Triphase Research & Development Corp., Unum Therapeutics, Verastem; all payments made to Sarah Cannon Research

without permission from the authors of this presentation.

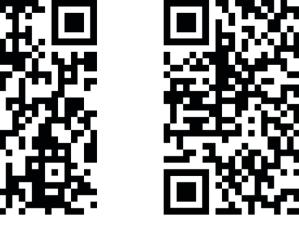
JRB: consultant for AbbVie, Acerta/AstraZeneca, BeiGene, Bristol Myers Squibb/Juno/Celgene, Catapult, Eli Lilly, Genentech/Roche, Janssen, MEI Pharma, Morphosys AG, Nextcea, Novartis, Pfizer, Rigel; research funding from Gilead, Loxo/Lilly, SecuraBio, Sun, TG Therapeutics.

research funding from AbbVie, Acerta Pharma, Agios, ArQule, AstraZeneca, BeiGene, Calithera Biosciences, Celgene, Constellation Pharmaceuticals, Curis, Forma

herapeutics, Forty Seven, Genentech, Gilead Sciences, IGM Biosciences, Incyte, Infinity Pharmaceuticals, Janssen, Juno Therapeutics, Karyopharm Therapeutics,

Kite Pharma. Loxo, Merck, MorphoSys, Novartis, Pfizer, Pharmacyclics, Portola Pharmaceuticals, Rhizen Pharmaceuticals, Roche, Seattle Genetics, Takeda, Teva,

PG: consultant for AbbVie, AstraZeneca, ArQule/MDS, BeiGene, Celgene/Juno/BMS, Janssen, Roche; research funding from AbbVie, AstraZeneca, Janssen, Gilead, Sunesis; honoraria from AbbVie, AstraZeneca, ArQule/MDS, BeiGene, Celgene/Juno/BMS, Janssen, Roche. TT, LZ, CM, JCP, AC: employees and shareholders of BeiGene (Beijing) Co., Ltd., Beijing, China and BeiGene USA, Inc.,


TR: research funding from AstraZeneca, AbbVie, Janssen, Octapharma, Gilead, Pharmacyclics, Pfizer, GlaxoSmithKline, Biogen.

PH: research funding from Janssen, AbbVie, Pharmacyclics, Roche, Gilead; honoraria from Janssen, AbbVie, Pharmacyclics, AstraZeneca, SOBI, BeiGene

CST: research funding from Janssen and AbbVie; honoraria from Janssen, AbbVie, BeiGene, Roche, Novartis. **HCiepluch**, **MTani**, **SG**, **JL**: no conflicts of interest.

Copies of this poster and the plain language summary obtained through Quick Response (QR) Code are for personal use only and may not be reproduced

