RATIONALE-304: The association of tumor mutational burden with clinical outcomes of tislelizumab plus chemotherapy versus chemotherapy alone as first-line treatment for advanced non-squamous non-small cell lung cancer

Shun Lu*,¹ Meili Sun,² Yunpeng Liu,³ Yanping Hu,⁴ Yanyan Xie,⁵ Zhehai Wang,⁶ Dong Wang,⁷ Zhenzhou Yang,⁷ Liang Liang,⁸ Yi Huo,⁸ Yun Zhang,⁸ Ruiqi Huang,⁸ Yang Shi,⁸ Wanyu He,⁹ Zhirong Shen,⁸ Yan Yu¹⁰ ¹Smagha Cheet Heaptal, Ala Torg University, Smarking, China Yang, ² The first heaptal of local Moreal University, Smarking, China Yang, ² Lie derge China,² Watan China, ⁴ Wen China Heaptal, Sharking China,⁴ Heaptal Heaptal, Sharking China,⁴ Heaptal Heaptal, Ala Torg University, Smarking, China,⁴ Heaptal, Alam China, ⁴ Went China Heaptal, Marking China,⁴ Heaptal, Heaptal, ³ China Heaptal, Heaptal, ³ China Heaptal, ³

Abstract No: LB512

Background

- □ Lung cancer is the leading cause of cancer death globally, with approximately 2.2 million new lung cancer cases and 1.8 million deaths in 2020,¹ indicating high unmet medical need
- □ Tislelizumab is an anti-programmed cell death protein 1 (anti-PD-1) antibody engineered to minimize binding to Fcγ receptors on macrophages, thereby abrogating antibody-dependent phagocytosis, a potential mechanism of resistance to anti-PD-1 therapies^{2,3}
- Primary results from the RATIONALE-304 (NCT03663205) trial showed that tislelizumab plus platinum-based chemotherapy significantly improved progression-free survival (PFS) over chemotherapy alone in treatment-naïve advanced non-squamous non-small cell lung cancer (nsq-NSCLC) (hazard ratio [HR]=0.645, p=0.0044, median PFS: 9.7 vs 7.6 months, respectively)⁴
- Tumor mutational burden (TMB) is a biomarker of interest due to its association with response to immunotherapy treatment in NSCLC^{5,6}
- Here we report a post-hoc, retrospective biomarker analysis of baseline tissue and blood TMB (tTMB and bTMB, respectively)

 Scan QR code to view the primary publication of RATIONALE-304:

Methods

- Patients with nsq-NSCLC were randomized 2:1 to tislelizumab plus platinum plus pemetrexed or platinum plus pemetrexed, as previously described.⁴ The primary endpoint was PFS determined by independent review committee
- TMB scores were evaluated in baseline tumor and blood samples by OncoScreen Plus[®]. Baseline programmed death-ligand 1 (PD-L1) status was tested by VENTANA SP263 Assay. The Spearman's rank correlation was assessed among tTMB, bTMB and PD-L1
- PFS of tislelizumab plus chemotherapy vs chemotherapy alone was compared within subgroups defined by TMB status using a Cox proportional hazard model with disease stage and PD-L1 expression as stratification factors. The interaction between treatment type and TMB status was analyzed. Interaction p values < 0.05 were considered statistically significant without multiplicity adjustment

Results

Patients

Across 325 patients who were treated, and did not have an epidermal growth factor receptor (EGFR) sensitizing mutation, 177 (54.5%) had evaluable tTMB and 107 (32.9%) had evaluable bTMB

Conclusions

- Baseline TMB demonstrated a trend for association with PFS benefit in patients receiving tislelizumab plus chemotherapy vs chemotherapy alone
- Further assessment in prospective research is needed to validate the clinical utility of TMB in patients with nsq-NSCLC treated with PD-(L)1 inhibitors in combination with chemotherapy

 Demographics and baseline characteristics were generally balanced across arms in the overall population, tTMB and bTMB biomarker-evaluable populations (BEPs), aside from age distribution, sex and smoking status (Table 1)

□ The PFS benefit of tislelizumab plus chemotherapy vs chemotherapy alone was observed in both the tTMB BEP (HR [95% CI]=0.76 [0.47, 1.25]) and bTMB BEP (0.48 [0.26, 0.87])

Table 1. Demographics and baseline characteristics

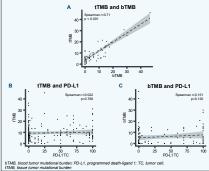
	Overall population		tTMB BEP		bTMB BEP	
	TIS +		TIS +		TIS +	
	chemo (n=217)	Chemo (n=108)	chemo (n=118)	Chemo (n=59)	chemo (n=74)	Chemo (n=33)
Age, years						
Median (IQR)	60.0 (55–65)	61.5 (55–67)	60.0 (55–66)	61.0 (55–67)	60.0 (54–65)	64.0 (60–68)
Age group, n (%)						
< 65 years	159 (73.3)	71 (65.7)	81 (68.6)	41 (69.5)	55 (74.3)	18 (54.5)
≥ 65 years	58 (26.7)	37 (34.3)	37 (31.4)	18 (30.5)	19 (25.7)	15 (45.5)
Sex, n (%)						
Female	52 (24.0)	32 (29.6)	26 (22.0)	20 (33.9)	19 (25.7)	2 (6.1)
Male	165 (76.0)	76 (70.4)	92 (78.0)	39 (66.1)	55 (74.3)	31 (93.9)
Smoking status, n (%)						
Current/former	145 (66.8)	65 (60.2)	81 (68.6)	36 (61.0)	52 (70.3)	26 (78.8)
Never	72 (33.2)	43 (39.8)	37 (31.4)	23 (39.0)	22 (29.7)	7 (21.2)
ECOG PS, n (%)						
0	52 (24.0)	23 (21.3)	28 (23.7)	15 (25.4)	24 (32.4)	7 (21.2)
1	165 (76.0)	85 (78.7)	90 (76.3)	44 (74.6)	50 (67.6)	26 (78.8)
Disease stage, n (%)						
IIIB	40 (18.4)	21 (19.4)	26 (22.0)	14 (23.7)	15 (20.3)	7 (21.2)
IV	177 (81.6)	87 (80.6)	92 (78.0)	45 (76.3)	59 (79.7)	26 (78.8)
PD-L1 expression on tu	mor cells, n	(%)				
TC < 1%	87 (40.1)	47 (43.5)	43 (36.4)	23 (39.0)	29 (39.2)	12 (36.4)
TC 1-49%	53 (24.4)	27 (25.0)	33 (28.0)	17 (28.8)	17 (23.0)	9 (27.3)
TC ≥ 50%	72 (33.2)	34 (31.5)	42 (35.6)	19 (32.2)	23 (31.1)	12 (36.4)
NE	5 (2.3)	0 (0)	0 (0)	0 (0)	5 (6.8)	0 (0)

 NE
 5 (2.3)
 0 (0)
 0 (0)
 0 (0)
 5 (6.8)
 0 (0)

 Data studit
 Johnstrander-exabilities
 Johnstrander-exabilities
 Johnstrander-exabilities
 O (0)

 BEP: Distancies-exabilities
 Johnstrander-exabilities
 Internative and standard
 Johnstrander-exabilities
 O (0)

 DECOG PS, Estate-to Cooperative Oncology Group performance status: (20, networks) respective. (K:, not evaluable)
 Networks
 N


PD-L1, programmed death-ligand 1; TC, tumor cell; TIS, tislelizumab; tTMB, tissue tumor mutational burden

Correlation between tTMB, bTMB and PD-L1

 Median tTMB and bTMB were 7.2 and 3.1 mutations per megabase (mut/Mb), respectively There was a modest correlation between tTMB and bTMB (Spearman r=0.71, p < 0.001) (Figure 1A)

 Neither tTMB nor bTMB was correlated with PD-L1 expression on tumor cells (Figure 1B and 1C)

Figure 1. The correlation between tTMB, bTMB, and PD-L1

Correlation of PFS with TMB status

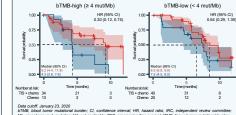

- The cutoffs of tTMB and bTMB were determined by the smallest integer greater than the median value of each dataset, 8 and 4 mut/Mb, respectively
- The prevalence of TMB-high was balanced between the tislelizumab plus chemotherapy arm and chemotherapy arm (tTMB: 47% vs 41%; bTMB: 46% vs 39%, respectively)
- Lower PFS HRs of tislelizumab plus chemotherapy vs chemotherapy alone were observed in patients with TMB-high status compared with TMB-low status (Figure 2)
- Interaction analysis showed that neither tTMB nor bTMB significantly differentiated treatment-specific PFS benefit (interaction p value=0.208 and 0.212, respectively)

Figure 2. PFS (IRC assessed) by tTMB and bTMB status Group TIS+ Chemo Chemo TTMB-high (> 8 muUMb) TTMB-high (> 8 muUMb) TTMB-log (> 8 muUMb) TTMB-log (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 muUMb) HR (6% CI) 0.00 (> 8 muUMb) TTMB-log (> 8 mu

TIS+chemo 62

Chemp 35

45

DIMB, blobb unine measurement of the state o

chemotherapy arm (HR [95% CI] in tTMB: 1.75 [0.77, 3.99]; in bTMB: 2.21 [0.83, 5.89]), but not in the tislelizumab + chemotherapy arm in tTMB: 0.93 [0.52, 1.66]; in bTMB: 1.04 [0.52, 2.12])

Limitations

TIS+chemp 56

Chemp 24

33

- The small sample size represents a limitation of this study
- OS will be analyzed to assess the consistency and robustness of TMB as a biomarker when it is available

References

 The Global Cancer Observatory. Lung Cancer Fact Sheet. 	Zhang T, et al. Cancer Immunol Immunother 2018;67:			
Available at:	1079-90			
https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-	4. Lu S, et al. J Thorac Oncol 2021;16:1512-22			
sheet.pdf. Accessed January 2022	5. Rizvi N, et al. Science 2015;348:124-8			
2. Dahan R, et al. Cancer Cell 2015;28:285-95	6. Aggarwal C, et al. Clin Cancer Res 2020;26:2354-61			

Acknowledgments

The authors with to acknowledge the investigative centers' study staff and study patients, and to recognize those from BeGreins, Lid, who have substantially contributed to the development of this presentation. This study was linded by BeGreine, Lid. Medical writing support, under direction of the authors, was provided by Louise Oakes, PhD, and Alison Whyteside, PhD, of Anthied MediCommon, an Anthied Hearth company, and was funded by BeGreine, Lid.

*Author contact details: shun.lu@me.com (Shun Lu)