

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Long-Term Efficacy and Safety of Zanubrutinib in Patients With Relapsed/Refractory Marginal Zone Lymphoma (MZL): Final Analysis of the MAGNOLIA (BGB-3111-214) Trial

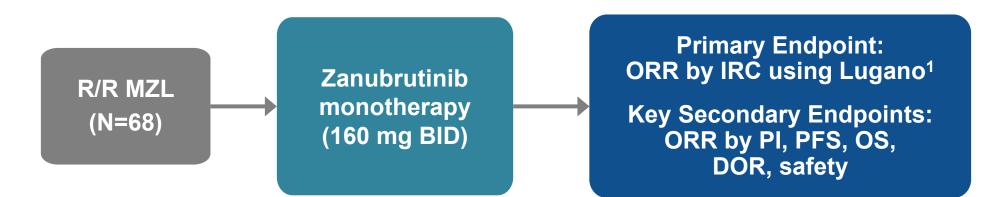
Stephen Opat,¹ Alessandra Tedeschi,² Bei Hu,³ Kim M. Linton,⁴ Pamela McKay,⁵ Sophie Leitch,⁶ Jie Jin,⁷ Mingyuan Sun,⁸ Magdalena Sobieraj-Teague,⁹ Pier Luigi Zinzani,¹⁰ Peter Browett,¹¹ Xiaoyan Ke,¹² Craig A. Portell,¹³ Catherine Thieblemont,¹⁴ Kirit Ardeshna,¹⁵ Fontanet Bijou,¹⁶ Patricia Walker,¹⁷ Eliza A. Hawkes,¹⁸ Shir-Jing Ho,¹⁹ Keshu Zhou,²⁰ Zhiyu Liang,²¹ Jianfeng Xu,²¹ Chris Tankersley,²¹ Richard Delarue,²¹ Melannie Co,²¹ and Judith Trotman²²

¹Monash Health and Monash University, Clayton, Victoria, Australia; ²ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ³Levine Cancer Institute/Atrium Health, Charlotte, NC, USA; ⁴Manchester Cancer Research Centre, Division of Cancer Sciences, Manchester, UK; ⁵Beatson West of Scotland Cancer Centre, Glasgow, UK; ⁶North Shore Hospital, Auckland, New Zealand; ⁷The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China; ⁸Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; ⁹Flinders Medical Centre, Bedford Park, South Australia, Australia; ¹⁰Institute of Hematology "Seràgnoli" University of Bologna, Bologna, Italy; ¹¹Auckland City Hospital, Grafton, New Zealand; ¹²Peking University Third Hospital, Beijing, China; ¹³University of Virginia, Comprehensive Cancer Center, Charlottesville, VA, USA; ¹⁴APHP, Hôpital Saint-Louis, Hemato-oncology, Paris University Diderot, Paris, France; ¹⁵University College London Hospitals, London, UK; ¹⁶Institut Bergonié, Bordeaux, France; ¹⁷Peninsula Private Hospital, Frankston, Victoria, Australia; ¹⁸Box Hill Hospital, Box Hill, Victoria, Australia; ¹⁹St. George Hospital, Kogarah, New South Wales, Australia; ²⁰Henan Cancer Hospital, Zhengzhou, Henan, China; ²¹BeiGene (Beijing) Co., Ltd., Beijing, China, BeiGene Switzerland GmbH and BeiGene USA, Inc., San Mateo, CA, USA; and ²²Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia

Saturday, December 10, 2022 (2:00 PM - 3:30 PM)

623. Mantle Cell, Follicular, and Other Indolent B Cell Lymphomas: Clinical and Epidemiological

American Society *of* Hematology

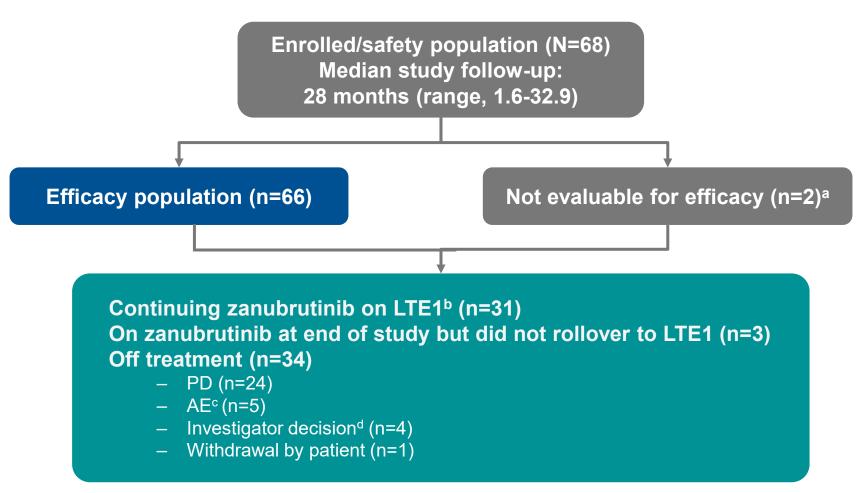

64th ASH Annual Meeting and Exposition, December 10-13, 2022 Abstract 234

INTRODUCTION

- Advanced-stage MZL is generally incurable¹
- BCR signaling is a critical pathway in MZL pathogenesis²
- BTK plays a key role in BCR signaling²
 - BTK inhibition has antitumor activity in various B-cell malignancies^{2,3}
- Zanubrutinib (BGB-3111) is a potent and highly specific next-generation BTK inhibitor
 - Designed to maximize BTK occupancy and minimize off-target inhibition of TEC- and EGFR-family kinases³⁻⁵
 - Can be coadministered with strong/moderate CYP3A inhibitors at a reduced dose, proton pump inhibitors, acid-reducing agents, and antithrombotic agents^{6,7}
 - Recently approved for the treatment of patients with R/R MZL based on the primary analysis results of the MAGNOLIA study (BGB-3111-214; NCT03846427)⁷
- Here we present the final analysis of MAGNOLIA at a median follow-up of 28 months

BCR, B-cell receptor; BTK, Bruton tyrosine kinase; CYP3A, cytochrome P450, subtype 3A; EGFR, epidermal growth factor receptor; R/R, relapsed, refractory; TEC, tyrosine kinase expressed in hepatocellular carcinoma. 1. Cheah et al. *Haematologica* 2022;107(1):35-43. 2. Pal Singh et al. *Mol Cancer* 2018;17(1):57. 3. Opat et al. *Clin Cancer Res* 2021;27(23):6323-6332. 4. Guo et al. *J Med Chem* 2019;62(17):7923-7940. 5. Rhodes et al. *Drug Des Devel Ther*. 2021;15:919-926. 6. Ou et al. *Br J Clin Pharmacol* 2021;87(7):2926-2936. 7. BRUKINSA[®] (zanubrutinib) [package insert]. BeiGene USA, Inc. September 2021.

MAGNOLIA (BGB-3111-214) Study Design A Phase 2, Multicenter, Open-Label, Single-Arm Study



- Patients with R/R MZL who received ≥1 CD20-directed regimen
- Response based on the Lugano classification for NHL¹
 - PET-based criteria for patients with IRC-confirmed FDG-avid disease
 - CT-based criteria for non-FDG-avid patients
 - Additional sensitivity analysis for all evaluable patients using CT-based criteria
- Biomarker correlative sub-study by the Australasian Leukaemia and Lymphoma Group

CT, computerized tomography; DOR, duration of response; FDG, fluorodeoxyglucose; IRC, independent review committee; ORR, overall response rate; OS, overall survival; PET, positron emission tomography; PFS, progression-free survival; PI, principal investigator. 1. Cheson et al. *J Clin Oncol* 2014;32(27):3059-3067.

🚯 American Society *of* Hematology

Patient Disposition

Data cutoff date: 04 May 2022.

^aTwo patients were excluded owing to lack of central confirmation of MZL. ^bBGB-3111-LTE1 is a BeiGene-sponsored, global, open-label extension study (NCT04170283). ^cFive patients discontinued treatment owing to AEs (2 patients with fatal COVID-19 pneumonia; 1 patient with pyrexia later attributed to disease progression; 1 patient with fatal myocardial infarction in a patient with preexisting cardiovascular disease; 1 patient who died from septic encephalopathy after bladder surgery (in CR at the time of death). ^dFour patients discontinued per investigator decision (3 patients required prohibited medications; 1 patient due to lack of clinical benefit). AE, adverse event; CR, complete remission; LTE, long-term extension; PD, progressive disease.

Baseline Demographics and Disease History

Characteristics, n (%)	Total (N=68)
Median age (range), years	70 (37-95)
≥65	41 (60)
≥75	19 (28)
Male	36 (53)
ECOG PS 0/1ª	63 (93)
MZL subtypes	
Extranodal	26 (38)
Nodal	26 (38)
Splenic	12 (18)
Unknown	4 (6)
Disease status	
Relapsed	44 (65)
Refractory	22 (32)
Stage III/IV	59 (87)
FDG-avid (by IRC)	61 (90)
Extranodal site involvement	53 (78)
Bone marrow infiltration	29 (43)
Median prior lines of systemic therapy (range)	2 (1-6)
Immunochemotherapy	61 (90) ^b
Rituximab monotherapy	7 (10)

^aOverall, 43% of patients had ECOG 1/2. ^bRituximab-based chemotherapy in most patients (n=60; 88%).

Best Overall Response by IRC and Investigator Assessment

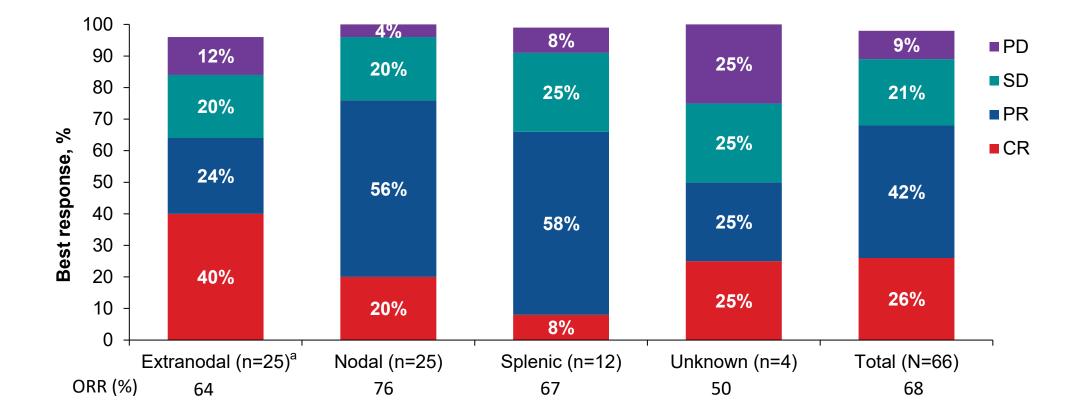
	(N=66) ^a		
	IRC		INV
Efficacy	PET and/or CT (primary endpoint) ^b	CT only (sensitivity analysis) ^f	PET and/or CT
ORR , n (%)	45 (68)	44 (67)	50 (76)
[95% CI]	[55.6, 79.1]	[54.0, 77.8]	[63.6 85.5]
<i>P</i> -value	<0.0001°		
Best response, n (%)			
CR	17 (26)	16 (24)	19 (29)
PR	28 (42)	28 (42)	31 (47)
SD	14 (21) ^{d,e}	16 (24)	10 (15)
PD	6 (9)	5 (8)	5 (8)
Discontinued study prior to 1st assessment, n (%)	1 (1)	1 (1)	1 (1)
Median time to response (range), months	2.8 (1.7-11.1)	3.0 (1.8-22.2)	2.8 (1.7-16.6)

^aTwo patients were excluded from the efficacy population owing to lack of central confirmation of MZL.

^bPatients with IRC-confirmed FDG-avid disease were assessed by PET-based criteria; non–FDG-avid patients were assessed by CT-based Lugano criteria.

P-value for the primary endpoint was computed with the binomial exact test against the null hypothesis of ORR = 30% with alternative of ORR > 30%.

^dFive (7.6%) patients with stable disease are remaining on study treatment (after 12-18 cycles).


elncludes one patient with FDG-avid disease who missed the PET scan at cycle 3 and was assessed as non-PD; CT showed stable disease at cycle 3.

^fAdditional sensitivity analysis using CT-based Lugano criteria for all 66-evaluable patients regardless of PET status at baseline.

INV, investigator; PET, positron emission tomography; PR, partial response; SD, stable disease.

Best Overall Response by IRC and MZL Subtypes

^aOne patient (extranodal MZL) who withdrew consent prior to the first disease assessment was not shown in the graph.

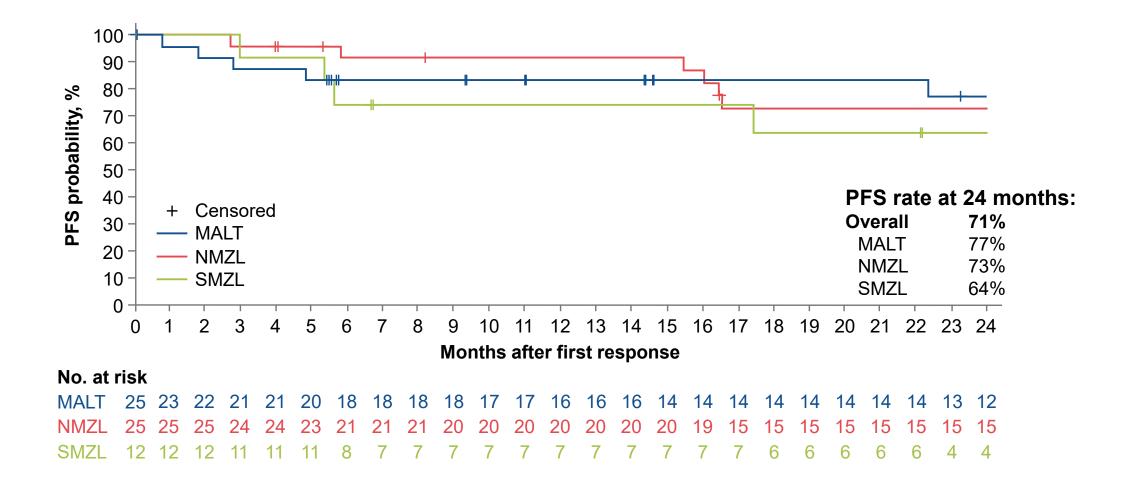
American Society of Hematology

Subgroup Analysis of ORR by IRC

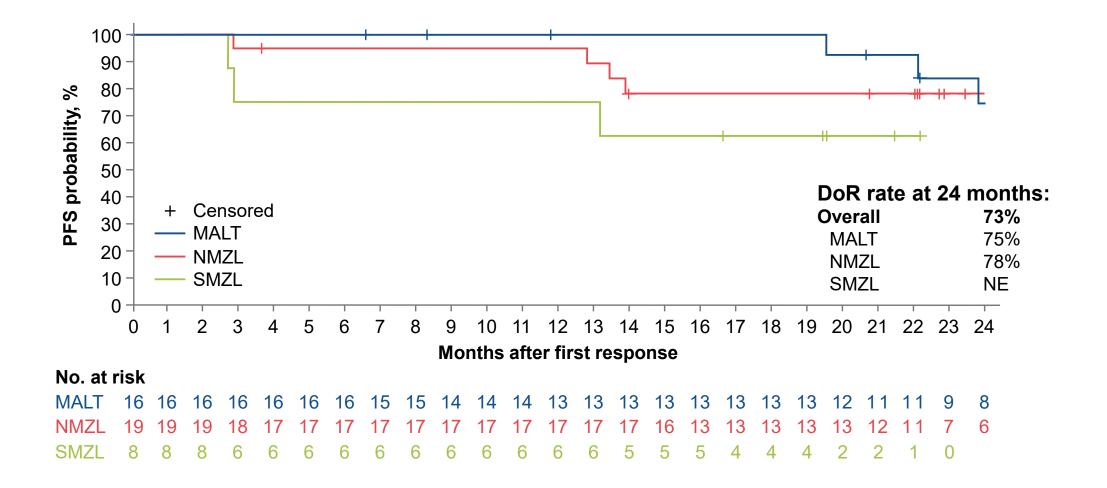
Subgroup	Patients/response		ORR, % (95% CI)ª
All patients	45/66	├────	68.2 (55.6, 79.1)
Age group			
<65	15/26	├────	57.7 (36.9, 76.7)
≥65	30/40	⊢	75.0 (58.8, 87.3)
<75	28/48	├───	58.3 (43.2, 72.4)
≥75	17/18	⊢	94.4 (72.7, 99.9)
MZL subtype			
MALT	16/25	├────	64.0 (42.5, 82.0)
NMZL	19/25	├────	76.0 (54.9, 90.6)
SMZL	8/12		66.7 (34.9, 90.1)
Unknown	2/4	├ ────┤	50.0 (6.8, 93.2)
Disease stage			
I	2/4	├ ──── │	50.0 (6.8, 93.2)
ll	3/5	├ ────┤	60.0 (14.7, 94.7)
III	5/7	⊢ I	71.4 (29.0, 96.3)
IV	35/50		70.0 (55.4, 82.1)
	+		
	0	25 50 75 100	

^aTwo-sided Clopper-Pearson. 95% Cls for ORR.

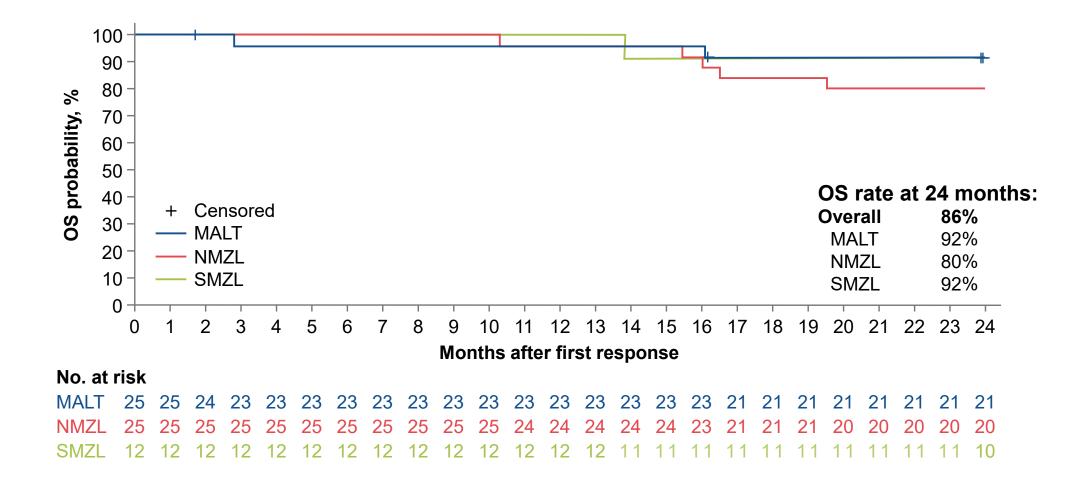
MALT, mucosa associated lymphoid tissue; NMZL, nodal MZL; SMZL, splenic MZL.


Subgroup Analysis of ORR by IRC (cont.)

Subgroup	Patients/response		ORR, % (95% CI)ª
Bone marrow involvement			
Yes	19/29	├ ──── │	65.5 (45.7, 82.1)
No	26/37	├────	70.3 (53.0, 84.1)
Disease status			
Relapsed	31/43	⊢	72.1 (56.3, 84.7)
Refractory	14/21	├────	66.7 (43.0, 85.4)
Prior lines of systemic ther	ару		
<3	36/48	├───	75.0 (60.4, 86.4)
≥3	9/18	├────	50.0 (26.0, 74.0)
Prior treatment			
RCVP	20/25	├────	80.0 (59.3, 93.2)
RCHOP	9/17	├────	52.9 (27.8, 77.0)
BR	16/22	├────	72.7 (49.8, 89.3)
R-lenalidomide	1/2	⊢	50.0 (1.3, 98.7)
Rituximab monotherapy	7/7	•	100.0 (59.0, 100.0)
CHOP	2/3	├ ────┤	66.7 (9.4, 99.2)
R-chlorambucil	2/5	├ ──── │	40.0 (5.3, 85.3)
		25 50 75 10)0


^aTwo-sided Clopper-Pearson. 95% CIs for ORR.

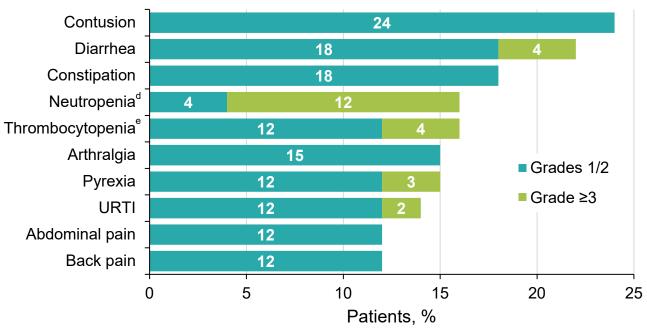
PFS by MZL Subtypes by IRC Assessment



DOR by MZL Subtypes by IRC Assessment

American Society *of* Hematology

Overall Survival by MZL Subtypes


American Society of Hematology

Q

TEAEs in All Patients

Safety Summary

TEAEs, n (%)	N=68
Patients with ≥1 TEAE	68 (100)
Grade ≥3 TEAE	33 (48)
Serious TEAE	30 (44)
Leading to death	5 (7)ª
Leading to dose interruption	25 (37) ^b
Leading to study drug discontinuation	5 (7)°
Leading to dose reduction	0

Most Common TEAEs

^aFive patients died owing to AEs: COVID-19 pneumonia (n=2); myocardial infarction in a patient with preexisting cardiovascular disease (n=1); acute myeloid leukemia in a patient with prior exposure to an alkylating agent (n=1); septic encephalopathy following radical cystectomy and ileal conduit in a patient with recurrent bladder cancer (in CR at the time of death; [n=1]). ^bMost common AEs leading to dose interruption: COVID-19 pneumonia (n=4), neutropenia (n=3), diarrhea (n=2), lower respiratory tract infection (n=2), prexia (n=2), syncope (n=2), and tonsillitis (n=2). ^cFive patients discontinued owing to AEs: COVID-19 pneumonia (n=2); pyrexia later attributed to disease progression (n=1); myocardial infarction (n=1); septic encephalopathy (n=1). ^dIncludes neutropenia and neutrophil count decreased. ^eIncludes thrombocytopenia and platelet count decreased TEAE, treatment-emergent adverse event; URTI, upper respiratory tract infection.

American Society of Hematology

TEAEs of Clinical Interest

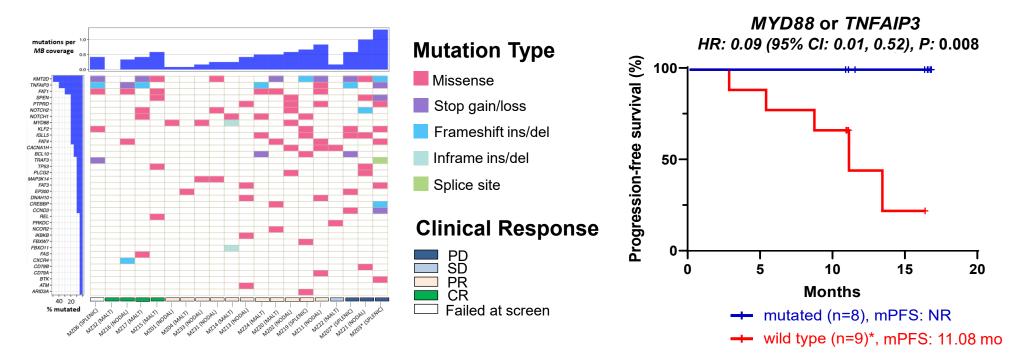
	N=68	
TEAEs of interest, n (%)	All grade	Grade ≥3
Infections	38 (56)	15 (22)ª
Hemorrhage	28 (41)	1 (1.5) ^b
Cardiac		
Hypertension	3 (4)°	2 (3)
Atrial fibrillation/flutter	2 (3) ^d	1 (1.5)
Ventricular extrasystole	1 (1.5) ^e	0
Second primary malignancy	5 (7) ^f	3 (4)

^aFatal infection: COVID-19 pneumonia (n=2).

^bGastrointestinal hemorrhage (day 862) in a patient who also received anticoagulant for pulmonary embolism; patient continued zanubrutinib with no recurrent bleeding episode.

°Two 2 patients had new-onset hypertension; none led to treatment reduction or discontinuation.

^dAtrial fibrillation in a patient with preexisting atrial fibrillation (21 days after end of treatment owing to disease progression). Patient with atrial flutter recovered spontaneously and continued zanubrutinib. ^eVentricular extrasystole in an 83-year-old patient with no known cardiac history, was non-serious, transient, resolved on the same day, and did not lead to treatment modification or discontinuation. ^fIncludes basal cell and squamous cell carcinoma and basal cell carcinoma (with history of skin cancer); papillary thyroid carcinoma; (with preexisting thyroid nodule); recurrent bladder cancer and prostate cancer (with history of bladder cancer); and acute myeloid leukemia (with prior chemotherapy with alkylating agent).


Cardiac TEAEs of Clinical Interest

	BGB-3111-214 B-cell malignancies ^c		
Cardiovascular disorders, n (%)	Zanubrutinib (n=68)	Zanubrutinib (N=1550)	lbrutinib (N=422)
Median treatment duration, months	24	26.64	19.96
Any cardiovascular medical history			
Atrial fibrillation/flutter	8 (11.7)	101 (6.5)	26 (6.2)
Ventricular arrhythmia ^a	0	14 (0.9)	1 (0.2)
Hypertension ^b	21 (30.9)	669 (43.2)	206 (48.8)
Any cardiovascular AE			
Atrial fibrillation/flutter	2 (3)	60 (3.9)	60 (14.2)
		EAIR: 0.13 vs 0.82 person-month (<i>p</i> < 0.0001)	
Ventricular arrhythmia (grade ≥2)ª	1 (1.5)	11 (0.7)	6 (1.4)
Hypertension ^b	3 (4)	225 (14.5)	85 (20.1)

^aIncluding ventricular tachyarrhythmia (SMQ narrow), ventricular arrhythmias and cardiac arrest (High Level Term MedDRA v24.0). ^bIncluding hypertension (SMQ narrow). ^cPooled analyses of 10 clinical studies of zanubrutinib.¹ CTCAE, Common Terminology Criteria for Adverse Events; EAIR, exposure-adjusted incident rate; MedDRA, Medical Dictionary for Regulatory Activities; SMQ, standardized MedDRA query. 1. Tam et al. LL&M 2022. Abstract 1324736.

Molecular Correlates Sub-Study¹ (Australasian Leukaemia and Lymphoma Group)

- Baseline WES was performed on 17 patients focusing on 48 genes known to be currently mutated in MZL
- More than 1 mutations were found in 16/17 (94%) patients
- MYD88 or TNFAIP3 mutations were associated with improved PFS
- Similar observation was reported by Noy et al with ibrutinib²

1. Tatarczuch et al. *HemaSphere* 2022;6(3):1146-1147. 2. Noy et al. *Blood Adv* 2020;4(22):5773-5784. HR, hazard ratio; ins/del, insertion/deletion; mPFS, median PFS; NR, not reached; WES, whole-exome sequencing.

CONCLUSIONS

At a median study follow-up of 28 months:

- Zanubrutinib showed high response rates and durable disease control in R/R MZL
 - ORR of 68% (by PET and/or CT) and 67% (by CT only) with a CR of ~25% by IRC
 - Responses in all MZL subtypes and in difficult-to-treat subgroups
 - At 24 months: PFS rate, 71%; DOR rate, 73%; OS rate, 86%
- Zanubrutinib was generally well tolerated
 - Hypertension and atrial fibrillation/flutter were uncommon; comparable rate to zanubrutinib pooled safety analyses and lower than reported for ibrutinib
 - One (1.5%) patient had major gastrointestinal hemorrhage while receiving concomitant anticoagulant
 - No new safety signals observed

ACKNOWLEDGMENTS

- We would like to thank the MAGNOLIA investigators, site support staff, and especially the patients for participating in this study.
- This study was sponsored by BeiGene. Editorial support was provided by Bio Connections LLC and funded by BeiGene.

Corresponding Author:

Stephen Opat, MD; e-mail: stephen.opat@monashhealth.org

Copies of this oral presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASH[®] and the authors of this presentation.

