Title: SEQUOIA: Results of a Phase 3 Randomized Study of Zanubrutinib (Zanu) versus Bendamustine + Rituximab (BR) in Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL)

Authors: Tadeusz Robak, MD, PhD¹; Krzysztof Giannopoulos, MD, PhD²³; Wojciech Jurczak, MD, PhD⁴; Martin Šimkovič, MD, PhD⁵,6; Mazyar Shadman, MD, MPH⁻,8; Anders Österborg, MD, PhD⁰,¹¹; Luca Laurenti, MD¹¹; Patricia Walker, MBBS, BMedSci, FRACP, FRCPA¹²; Stephen Opat, MBBS (Hons), FRACP, FRCPA¹³,¹¹+, Henry Chan, MBChB, FRACP, FRCPA¹⁵; Hanna Ciepluch, MD, PhD¹⁶; Richard Greil, MD¹,¹¹,¹¹,¹ Monica Tani, MD²⁰; Marek Trněný, MD²¹; Danielle M. Brander, MD²²; Ian W. Flinn, MD, PhD²³; Sebastian Grosicki, MD, PhD²⁴; Emma Verner, MBBS, BMedSci, FRCPA, FRACP²5,²6; Brad S. Kahl, MD²¬; Paolo Ghia, MD, PhD²²; Jianyong Li, MD, PhD²⁰; Tian Tian, PhD³⁰; Lei Zhou, MD³⁰; Carol Marimpietri³⁰; Jason C. Paik, MD, PhD³⁰; Aileen Cohen, MD, PhD³⁰; Jennifer R. Brown MD, PhD³¹; Peter Hillmen, MBChB, PhD³²; Constantine S. Tam, MBBS, MD³³,³4,35,36

Affiliations: ¹Medical University of Lodz, Lodz, Poland: ²Experimental Hematooncology Department, Medical University of Lublin, Lublin, Poland; ³Hematology Department, St. John's Cancer Centre, Lublin, Poland; ⁴Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland: 5Fourth Department of Internal Medicine - Haematology, University Hospital, Hradec Kralove, Czech Republic; ⁶Faculty of Medicine, Charles University, Prague, Czech Republic; ⁷Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁸Department of Medicine, University of Washington, Seattle, WA, USA; 9Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; ¹⁰Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; ¹¹Fondazione Policlinico Universitario A Gemelli UCSC, Rome, Italy; ¹²Peninsula Private Hospital, Frankston, Victoria, Australia; ¹³Monash Health, Clayton, Victoria, Australia: 14 Monash University, Clayton, Victoria, Australia: 15 North Shore Hospital, Auckland, New Zealand; ¹⁶Copernicus Regional Oncology Center, Gdansk, Poland; ¹⁷Third Medical Department with Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria; ¹⁸Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria; 19 Cancer Cluster Salzburg (CCS), Salzburg, Austria; ²⁰Hematology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy; ²¹First Department of Medicine, First Faculty of Medicine, Charles University, General Hospital, Prague, Czech Republic; ²²Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, USA; ²³Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA; ²⁴Department of Hematology and Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland; ²⁵Concord Repatriation General Hospital, Concord, New South Wales, Australia; ²⁶University of Sydney, Sydney, New South Wales, Australia; ²⁷Washington University School of Medicine, St Louis, MO. USA: ²⁸Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy; ²⁹Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiansu Province Hospital, Nanjing, China; 30 Bei Gene (Beijing) Co., Ltd., Beijing, China and BeiGene USA, Inc., San Mateo, CA, USA; 31 Dana-Farber Cancer Institute, Boston, MA, USA;

³²St James's University Hospital, Leeds, United Kingdom; ³³Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ³⁴University of Melbourne, Parkville, Victoria, Australia; ³⁵St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; ³⁶Royal Melbourne Hospital, Parkville, Victoria, Australia

ABSTRACT

Zanu is a selective next-generation Bruton tyrosine kinase (BTK) inhibitor designed to have high BTK specificity and minimal off-target effects. In a phase 1/2 study, zanu showed complete and sustained BTK occupancy in peripheral blood mononuclear cells and lymph nodes and showed durable clinical responses in patients (pts) with CLL/ SLL. Here, interim results are presented for the global, open-label, phase 3 SEQUOIA (BGB-3111-304; NCT03336333) trial, which evaluated efficacy and safety of zanu vs BR in TN CLL/SLL. Pts without del(17p) were randomized to zanu (160 mg twice daily) or bendamustine (day 1-2: 90 mg/m²) and rituximab (cycle 1: 375 mg/m²: cycles 2-6: 500 mg/m²) arms (Cohort 1). Adults with CLL/SLL who met iwCLL criteria for treatment were eligible if ≥65 y old or unsuitable for fludarabine/cyclophosphamide/rituximab. Central verification of del(17p) status by fluorescence in situ hybridization was required. Pts were stratified by age (<65 y vs ≥65 y), Binet Stage (C vs A/B), IGHV mutational status, and geographic region. The primary endpoint was independent review committee (IRC)-assessed progression-free survival (PFS) in Cohort 1. Secondary endpoints included investigator (INV)-assessed PFS, overall response rate (ORR; by IRC and INV), overall survival (OS), and safety. Responses for CLL and SLL were assessed per modified iwCLL criteria and Lugano criteria. Adverse events (AEs) were recorded until disease progression. From 31Oct 2017–22Jul 2019, 479 pts without del(17p) were randomized to zanu (n=241) and BR (n=238). Treatment arms were well balanced for baseline characteristics (zanu vs BR): median age, 70.0 y vs 70.0 y; unmutated IGHV, 53.4% vs 52.4%; and del(11g), 17.8% vs 19.3%. At median follow-up (26.2 mo), PFS by IRC was significantly prolonged with zanu vs BR (HR 0.42, 95% CI 0.28–0.63, 1-sided and 2-sided P<0.0001); similar results were observed by INV (HR 0.42, 95% CI 0.27–0.66, 1-sided *P*<0.0001, 2-sided *P*=0.0001). Treatment benefit for zanu was observed across age, Binet stage, bulky disease, and del(11q) status subgroups. Treatment benefit was observed for unmutated IGHV (HR 0.24, 1-sided and 2-sided P<0.0001), but not mutated IGHV (HR 0.67, 1-sided P=0.0929). Estimated 24-mo PFS (IRC) for zanu vs BR was 85.5% (95% CI 80.1% – 89.6%) vs 69.5% (95% CI 62.4%-75.5%). ORR by IRC for zanu vs BR was 94.6% (95% CI 91.0%-97.1%) vs 85.3% (95% CI 80.1%–89.5%). Complete response rate was 6.6% (zanu) and 15.1% (BR). ORR by INV for zanu vs BR

was 97.5% (95% CI 94.7%–99.1%) vs 88.7% (95% CI 83.9%–92.4%). Estimated 24-mo OS for zanu vs BR was 94.3% (95% CI 90.4%–96.7%) and 94.6% (95% CI 90.6%–96.9%). AEs of interest (pooled terms, zanu vs BR) included atrial fibrillation (any grade [gr]: 3.3% vs 2.6%), bleeding (any gr/gr≥3: 45.0%/3.8% vs 11.0%/1.8%), hypertension (any gr: 14.2% vs 10.6%), infection (any gr/gr≥3: 62.1%/16.3% vs 55.9%/18.9%), and neutropenia (any gr/gr≥3: 15.8%/11.7% vs 56.8%/51.1%). Treatment discontinuation due to AEs occurred in 20 pts (8.3%; zanu) vs 31 pts (13.7%; BR); 85.5% of pts receiving zanu remain on treatment. AEs leading to death occurred in 11 pts (4.6%; zanu) vs 11 pts (4.8%; BR). No sudden deaths were reported. In summary, in this global registrational trial, zanu demonstrated statistically significant improvement in PFS compared to BR as assessed by IRC. Zanu was generally well tolerated, with low rates of atrial fibrillation consistent with those observed in the phase 3 ASPEN and ALPINE studies. These data support the potential utility of zanu in the frontline management of TN CLL/SLL.