
XXX ZJAZD

POLSKIEGO TOWARZYSTWA
HEMATOLOGÓW
I TRANSFUZJOLOGÓW

8-10 września 2022 r., Bydgoszcz

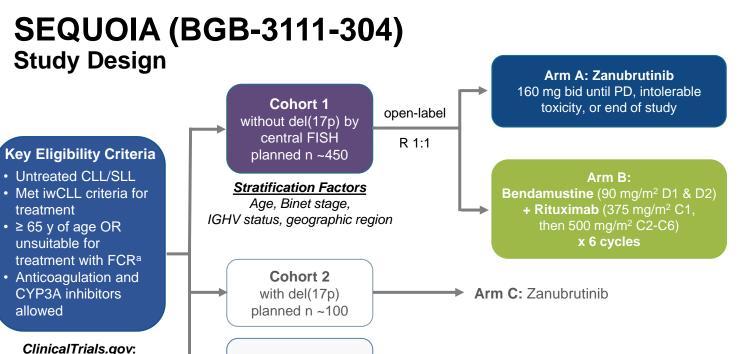
SEQUOIA: Results of a Phase 3 Randomized Study of Zanubrutinib versus Bendamustine + Rituximab in Patients with Treatment-Naive CLL/SLL

Tadeusz Robak¹, Krzysztof Giannopoulos²,³, Wojciech Jurczak⁴, Martin Šimkovič⁵,⁶, Mazyar Shadman³,ð, Anders Österborg⁰,¹0, Luca Laurenti¹¹, Patricia Walker¹², Stephen Opat¹³,¹⁴, Henry Chan¹⁵, Hanna Ciepluch¹⁶, Richard Greil¹¹,¹¹ð,¹ð, Monica Tani²⁰, Marek Trněný²¹, Danielle M. Brander²², Ian W. Flinn²³, Sebastian Grosicki²⁴, Emma Verner²⁵,²⁶, Brad S. Kahl²ð, Paolo Ghia²ð, Jianyong Li²ð, Tian Tian³⁰, Lei Zhou³⁰, Carol Marimpietri³⁰, Jason C. Paik³⁰, Aileen Cohen³⁰, Jennifer R. Brown³¹, Peter Hillmen³², Constantine S. Tam¹⁴,³³

Medical University of Lodz, Lodz, Poland; ²Experimental Hematooncology Department, Medical University of Lublin, Lublin, Poland; ³Hematology Department, St. John's Cancer Centre, Lublin, Poland; ⁴Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; ⁵Fourth Department of Internal Medicine - Haematology, University Hospital, Hradee Kralove, Czech Republic; ⁷Ferd Hutchinson Cancer Research Center, Seattle, WA, USA; ⁵Department of Medicine, University of Washington, Seattle, WA, USA; ⁵Department of Hematology, Karolinska Institute, Stockholm, Sweder, ¹⁰Department of Hematology, Karolinska Institute, Stockholm, Sweder, ¹⁰Department of Necology-Pathology, Karolinska Institute, Hospital, Stockholm, Sweder, ¹⁰Department of Medicine, University Hospital, Stockholm, Sweder, ¹⁰Department Hospital, Prenisual Private Hospital, Frankston, VIC, Australia; ¹⁵North Shore Hospital, Auckland, New Zealand; ¹⁶Copernicus Regional Oncology Center, Gdansk, Poland; ¹⁷Third Medical Department with Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria; ¹⁸Salzburg Cancer Research Institute (SCRI) Center for Cinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria; ¹⁹Cancer Cluster Salzburg (CCS), Salzburg, Austria; ¹⁹Hematology, Init, Santa Maria delle Croci Hospital, Ravenna, Italy; ²⁴Department of Medicine, Purtam Research Institute, USA; ²⁵Santa Medical University, General Hospital, Prague, Czech Republic; ²⁴Hematologic Malignancies and Cellular Therapy, Duke University CSchool of Medicine, Purtam Austria; ²⁴University of Sydney, Sydney, NSW, Australia; ²⁵University of Sydney, Sydney, NSW, Australia; ²⁶University of Sydney, Sydney, NSW, Australia; ²⁶University of Sydney, Sydney, NSW, Australia; ²⁷Washington University School of Medicine, Durtam, NC, USA; ²⁶Department of Hematology, The First Affiliated Hospital, Nelbourne, VIC, Australia; ²⁶Department Of Hospital, Nanjing, China; ³⁰BeiGene (B

Disclosures for Tadeusz Robak

Research funding from AstraZeneca, AbbVie, Janssen, Octapharma, Gilead, Pharmacyclics, Pfizer, GlaxoSmithKline, and Biogen; advisory board for Biogen, AbbVie, Octapharma, and Janssen



Introduction

- Treatment of CLL/SLL has been transformed with the advent of effective inhibitors of B-cell receptor signaling, such as the BTK inhibitors ibrutinib and acalabrutinib
- Zanubrutinib (BGB-3111) is a highly selective next-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target effects^{1,2}
- Efficacy and safety of zanubrutinib has been recently demonstrated in two large randomized studies in Waldenström macroglobulinemia and relapsed/refractory CLL/SLL, with lower rates of atrial fibrillation when compared with ibrutinib^{3,4}
- Preliminary data showing high response rates with zanubrutinib in untreated patients with the high-risk genomic abnormality, del(17p), have been recently published^{5,6}

NCT03336333

Cohort 3¹

planned n ~110

Endpoints^b

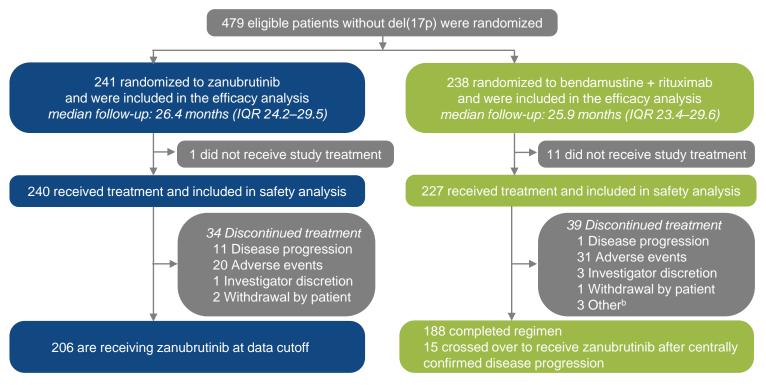
Primary Endpoint

PFS (IRC)

Select Secondary Endpoints

- PFS (investigator)^c
- ORR (IRC and investigator)^c
- OS
- Safety

^aDefined as Cumulative Illness Rating Scale > 6, creatinine clearance < 70 mL/min, or a history of previous severe infection or multiple infections within the last 2 years. ^bOne prespecified interim analysis was planned at approximately 86 events; efficacy analyses were ITT. ^cIRC and investigator response assessments per modified iwCLL criteria for CLL^{2,3} and Lugano criteria for SLL.⁴ bid, twice daily; C, cycle; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; CYP3A, cytochrome P450, family 3, subfamily A; D, day; del(17p), chromosome 17p deletion;


Arm D: Zanubrutinib + Venetoclax

FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence in-situ hybridization; *IGHV*, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee; ITT, intent to treat; iwCLL, International Workshop on CLL; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; R, randomized.

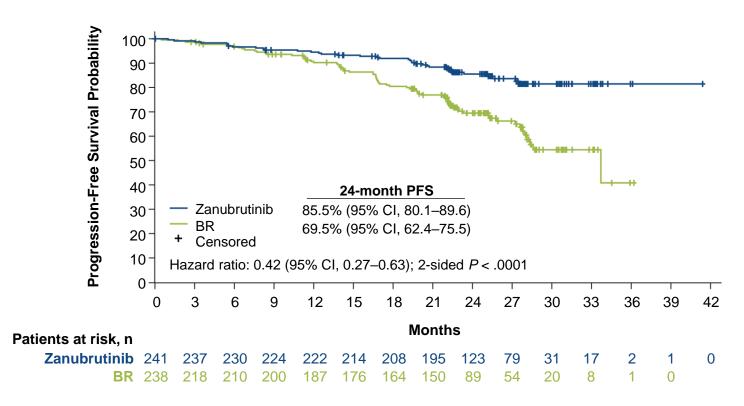
1. Tedeschi A, et al. ASH 2021. Abstract 67; 2. Hallek M, et al. Blood. 2008;111:5446-5456; 3. Cheson BD, et al. J Clin Oncol. 2012;30:2820-2822; 4. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3067.

Patient Disposition^a

^aEnrollment Period: October 2017–July 2019. ^bOne patient discontinued after extended dose hold for an adverse event; 1 patient elected to discontinue treatment after multiple adverse events; 1 patient did not want to continue treatment.

del(17p), chromosome 17p deletion; IQR, interquartile range.

Select Baseline Patient and Disease Characteristics


	Arm A	Arm B	
	Zanubrutinib	BR	
	(n = 241)	(n = 238)	
Age, median (IQR), years	70 (66–75)	70 (66–74)	
Age ≥ 65, n (%)	196 (81.3)	192 (80.7)	
Male, n (%)	154 (63.9)	144 (60.5)	
ECOG PS 2, n (%)	15 (6.2)	20 (8.4)	
Geographic region, n (%)			
North America	34 (14.1)	28 (11.8)	
Europe	174 (72.2)	172 (72.3)	
Asia/Pacific	33 (13.7)	38 (16.0)	
Binet stage C, ^a n (%)	70 (29.0)	70 (29.4)	
Bulky disease ≥ 5 cm, n (%)	69 (28.6)	73 (30.7)	
Cytopenia at baseline, ^b n (%)	102 (42.3)	109 (45.8)	
Unmutated IGHV gene, n/N (%)	125/234 (53.4)	121/231 (52.4)	
del(11q), n (%)	43 (17.8)	46 (19.3)	
TP53 mutation, n/N (%)	15/232 (6.5)	13/223 (5.8)	

aPatients with SLL had Binet stage calculated as if they had CLL; bDefined as having anemia (hemoglobin ≤ 110 g/L) or thrombocytopenia (platelets ≤ 100×10^9 /L) or neutropenia (absolute neutrophil count ≤ 1.5×10^9 /L).

BR, bendamustine + rituximab; CLL, chronic lymphocytic leukemia; del(11q), chromosome 11q deletion; ECOG PS, Eastern Cooperative Oncology Group performance status; *IGHV*, gene encoding the immunoglobulin heavy chain variable region; IQR, interquartile range; SLL, small lymphocytic lymphoma; *TP53*, gene encoding tumor protein p53.

PFS Per IRC Assessment

PFS Per IRC Assessment by Key Patient Subgroups

	Event/Pati	ent		
Subgroup	Zanubrutinib	BR		Hazard Ratio (95% CI), %a
All Patients	36/241	71/238	-	0.42 (0.28–0.63)
Age (years) < 65 ≥ 65	6/45 30/196	19/46 52/192	—	0.25 (0.10–0.62) 0.47 (0.30–0.74)
Sex Male Female	24/154 12/87	47/144 24/94	—	0.39 (0.24–0.64) 0.45 (0.23–0.91)
Binet stage A or B C	24/171 12/70	52/168 19/70	<u> </u>	0.39 (0.24–0.64) 0.48 (0.23–1.00)
ECOG PS 0 ≥ 1	12/110 24/131	24/101 47/137		0.39 (0.19–0.78) 0.43 (0.26–0.71)
Bulky disease, LDi < 5 cm ≥ 5 cm	21/172 15/69	44/165 27/73		0.37 (0.22–0.63) 0.52 (0.27–0.97)
IGHV mutational status Mutated Unmutated	18/109 15/125	25/110 45/121	—	0.67 (0.36–1.22) 0.24 (0.13–0.43)
Cytopenias at baseline ^b Yes No	21/102 15/139	34/109 37/129	—	0.55 (0.32–0.95) 0.31 (0.17–0.57)
Chromosome 11q deletion Yes No	7/43 29/198	22/46 49/192	—	0.21 (0.09–0.50) 0.50 (0.32–0.80)
			0 1	2 3

^aHazard ratios were calculated using a stratified Cox regression model;

BR, bendamustine + rituximab; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status; *IGHV*, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee; LDi, longest diameter; PFS, progression-free survival.

^bDefined as having anemia (hemoglobin ≤ 110 g/L) or thrombocytopenia (platelets ≤ 100×10^9 /L) or neutropenia (absolute neutrophil count ≤ 1.5×10^9 /L).

Adverse Event Summary

	<u>Arm A</u> Zanubrutinib	<u>Arm B</u> BR
	$(n = 240^a)$	$(n = 227^a)$
Any AE, n (%)	224 (93.3)	218 (96.0)
Grade ≥ 3 AE, n (%)	126 (52.5)	181 (79.7)
Serious AE, n (%)	88 (36.7)	113 (49.8)
Fatal AE, n (%)	11 (4.6)	11 (4.8)
AE leading to dose reduction, n (%)	18 (7.5)	84 (37.4)
AE leading to dose interruption/delay, n (%)	111 (46.3)	154 (67.8)
AE leading to discontinuation, n (%)	20 (8.3)	31 (13.7)

• AEs were recorded until disease progression to support safety evaluation over an equivalent time period

^aSafety was assessed in patients who received ≥ 1 dose of treatment; 1 patient in Arm A and 11 patients in Arm B did not receive treatment. AE, adverse event; BR, bendamustine + rituximab.

Adverse Events of Interest

	Zanub	<u>Arm A</u> Zanubrutinib (n = 240ª)		<u>Arm B</u> BR (n = 227ª)	
AE, n (%)	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3	
Anemia	11 (4.6)	1 (0.4)	44 (19.4)	4 (1.8)	
Neutropenia ^b	38 (15.8)	28 (11.7)	129 (56.8)	116 (51.1)	
Thrombocytopenia ^c	11 (4.6)	5 (2.1)	40 (17.6)	18 (7.9)	
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)	
Atrial fibrillation	8 (3.3)	1 (0.4)	6 (2.6)	3 (1.3)	
Bleeding ^d	108 (45.0)	9 (3.8)	25 (11.0)	4 (1.8)	
Major bleedinge	12 (5.0)	9 (3.8)	4 (1.8)	4 (1.8)	
Diarrhea	33 (13.8)	2 (0.8)	31 (13.7)	5 (2.2)	
Hypertension ^f	34 (14.2)	15 (6.3)	24 (10.6)	11 (4.8)	
Infections ⁹	149 (62.1)	39 (16.3)	127 (55.9)	43 (18.9)	
Myalgia	9 (3.8)	0 (0.0)	3 (1.3)	0 (0.0)	
Other cancers	31 (12.9)	17 (7.1)	20 (8.8)	7 (3.1)	
Dermatologic other cancers	16 (6.7)	2 (0.8)	10 (4.4)	2 (0.9)	

^aSafety was assessed in patients who received ≥ 1 dose of treatment; 1 patient in Arm A and 11 patients in Arm B did not receive treatment; ^bNeutropenia, neutrophil count decreased, or febrile neutropenia; ^cThrombocytopenia or platelet count decreased; ^dPooled term of all-cause bleeding including bruising, petechiae, purpura, and contusion; ^eMajor bleeding included all Grade ≥ 3, serious, and any-grade central nervous system hemorrhage; ^fHypertension, blood pressure increased, or hypertensive crisis; ^gAll infection terms pooled.

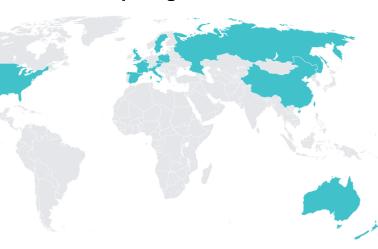
AE, adverse event; BR, bendamustine + rituximab.

Conclusions

- Zanubrutinib demonstrated superiority in progression-free survival over BR (hazard ratio, 0.42; 2-sided P < .0001) as assessed by independent review
- Superiority was also observed across high-risk subgroups, such as patients with unmutated IGHV and del(11q)
- Consistent with other zanubrutinib studies, zanubrutinib appeared well tolerated with no new safety signals identified; the rate of atrial fibrillation was low
- These data demonstrate that chemotherapy-free treatment using the potent and selective BTK inhibitor, zanubrutinib, is safe and effective for patients with treatment-naive CLL/SLL

Acknowledgments

We would like to thank the investigators, site support staff, and especially the patients and their caregivers for participating in this study.


We also would like to thank Vanitha Ramakrishnan, Maria Salaverri, Sowmya Kuwahara, Fangfang Yin, Andy Szeto, and Axel Gayko for their contributions to biomarker analysis, operational support, and data analysis.

This study was sponsored by BeiGene.

Editorial support was provided by Medical Expressions and funded by BeiGene.

Correspondence: robaktad@csk.umed.lodz.pl

Participating countries

