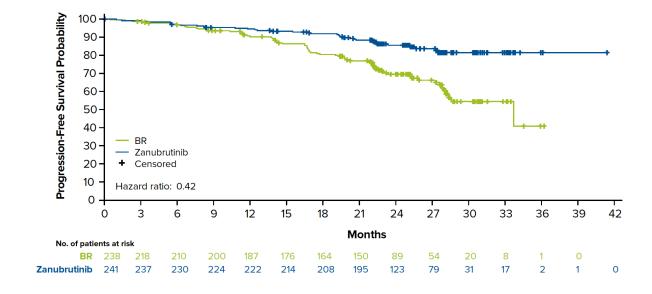
SEQUOIA: Results of a Phase 3 Randomized Study of Zanubrutinib (Zanu) Versus Bendamustine + Rituximab (BR) in Patients (Pts) With Treatment-Naïve (TN) Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL)

Authors: Mazyar Shadman, MD, MPH^{1,2}; Krzysztof Giannopoulos, MD, PhD^{3,4}; Wojciech Jurczak, MD, PhD⁵; Martin Šimkovič, MD, PhD^{6,7}; Anders Österborg, MD, PhD^{8,9}; Luca Laurenti, MD¹⁰; Patricia Walker, MBBS, BMedSci, FRACP, FRCPA¹¹; Stephen Opat, MBBS (Hons), FRACP, FRCPA^{12,13}; Henry Chan, MBChB, FRACP, FRCPA¹⁴; Hanna Ciepluch, MD, PhD¹⁵; Richard Greil, MD^{16,17,18}; Monica Tani, MD¹⁹; Marek Trněný, MD²⁰; Danielle M. Brander, MD²¹; Ian W. Flinn, MD, PhD²²; Sebastian Grosicki, MD, PhD²³; Emma Verner, MBBS, BMedSci, FRCPA, FRACP^{24,25}; Jennifer R. Brown MD, PhD²⁶; Brad S. Kahl, MD²⁷; Paolo Ghia, MD, PhD²⁸; Jianyong Li, MD, PhD²⁹; Tian Tian, PhD³⁰; Lei Zhou, MD³⁰, Carol Marimpietri³⁰; Jason C. Paik, MD, PhD³⁰; Aileen Cohen, MD, PhD³⁰; Jane Huang, MD³⁰; Tadeusz Robak, MD, PhD³¹; Peter Hillmen, MBChB, PhD³²; and Constantine S. Tam, MBBS, MD^{33,34,35,36}

Affiliations: ¹Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ²Department of Medicine, University of Washington, Seattle, WA, USA; ³Experimental Hematooncology Department, Medical University of Lublin, Lublin, Poland; ⁴Hematology Department, St. John's Cancer Centre, Lublin, Poland; ⁵Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; ⁶Fourth Department of Internal Medicine - Haematology, University Hospital, Hradec Kralove, Czech Republic; ⁷Faculty of Medicine, Charles University, Prague, Czech Republic; ⁸Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; ⁹Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; 10 Fondazione Policlinico Universitario A Gemelli UCSC, Rome, Italy; ¹¹Peninsula Private Hospital, Frankston, Victoria, Australia; ¹²Monash Health, Clayton, Victoria, Australia: 13 Monash University, Clayton, Victoria, Australia: 14 North Shore Hospital. Auckland, New Zealand; ¹⁵Copernicus Regional Oncology Center, Gdansk, Poland; ¹⁶Third Medical Department with Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria; ¹⁷Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria; ¹⁸Cancer Cluster Salzburg (CCS), Salzburg, Austria; ¹⁹Hematology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy; ²⁰First Department of Medicine, First Faculty of Medicine, Charles University, General Hospital, Prague, Czech Republic; ²¹Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, USA; ²²Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA; ²³Department of Hematology and Cancer Prevention, Health Sciences Faculty, Medical University of Silesia, Katowice, Poland; ²⁴Concord Repatriation General Hospital, Concord, New South Wales, Australia; ²⁵University of Sydney, Sydney, New South Wales, Australia; ²⁶Dana-Farber Cancer Institute, Boston, MA, USA; ²⁷Washington University School of Medicine, St Louis, MO, USA; ²⁸Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy; ²⁹Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiansu Province Hospital, Nanjing, China; 30 Bei Gene (Beijing) Co., Ltd., Beijing, China and BeiGene USA, Inc., San Mateo, CA, USA, 31 Medical University of Lodz, Lodz, Poland; ³²St James's University Hospital, Leeds, United Kingdom; ³³Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ³⁴University of Melbourne, Parkville, Victoria, Australia; ³⁵St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; and ³⁶Royal Melbourne Hospital, Parkville, Victoria, Australia

Background: Zanu, a selective next-generation BTK inhibitor designed to have high specificity for BTK and minimize off-target effects, showed complete and sustained BTK occupancy and was associated with durable clinical responses in a phase 1/2 CLL/SLL study.


Methods: Adult TN pts with del(17p)-negative CLL/SLL were randomized to zanu 160 mg BID until disease progression or bendamustine 90 mg/m² on Days 1 and 2 and rituximab 375 mg/m² in Cycle 1, 500 mg/m² in Cycles 2-6 for 6×28 -day cycles. Eligible pts who met iwCLL criteria for requiring treatment were ≥ 65 y or unsuitable for fludarabine, cyclophosphamide and rituximab. Central del(17p) status verification was required. Pts were stratified by age (<65 y vs ≥ 65 y), Binet stage (C vs A/B), IGHV mutational status and geographic region. The primary endpoint was PFS by independent review committee (PFS_{IRC}). Secondary endpoints included PFS by investigator (PFS_{INV}), ORR, OS, and safety. Responses were assessed per modified iwCLL and Lugano (SLL) criteria.

Results: From 31 Oct 2017-22 Jul 2019, 479 pts were randomized (zanu, n=241; BR, n=238); treatment groups were well balanced. At median follow-up of 26.2 mo, PFS_{IRC} was significantly longer with zanu vs BR (HR 0.42, 95% CI 0.28-0.63, 2-sided P<0.0001; **Figure**); PFS_{INV} was similar (HR 0.42, 95% CI 0.27-0.66, 2-sided P=0.0001). Treatment benefit for zanu was seen across subgroups for age, Binet stage, bulky disease, del(11q) status, and for unmutated IGHV (HR 0.24, 1- and 2-sided P<0.0001) but not for mutated IGHV (HR 0.67, 1-sided P=0.0929). Estimated 24-mo PFS_{IRC} for zanu vs BR was 85.5% (95% CI 80.1%-89.6%) vs 69.5% (95% CI 62.4%-75.5%). ORR_{IRC} for zanu vs BR was 94.6% (95% CI 91.0%-97.1%) vs 85.3% (95% CI 80.1%-89.5%). Complete response rate was 6.6% with zanu and 15.1% with BR. ORR_{INV} for zanu vs BR was 97.5% (95% CI 94.7%-99.1%) vs 88.7% (95% CI 83.9%-92.4%).

AEs of interest (zanu vs BR) included atrial fibrillation (any grade [gr]: 3.3% vs 2.6%), bleeding (any gr/gr ≥ 3 : 45.0%/3.8% vs 11.0%/1.8%), hypertension (any gr: 14.2% vs 10.6%), infection (any gr/gr ≥ 3 : 62.1%/16.3% vs 55.9%/18.9%), and neutropenia (any gr/gr ≥ 3 : 15.8%/11.7% vs 56.8%/51.1%). Treatment discontinuation due to AEs trended higher for BR (zanu: n=20, 8.3%; BR: n=31, 13.7%); 85.5% of pts receiving zanu remained on treatment. AEs leading to death occurred in 11 pts (4.6%) receiving zanu vs 11 pts (4.8%) receiving BR. No sudden deaths were reported.

Conclusions: Zanu significantly improved PFS_{IRC} vs BR. Superiority was observed in PFS_{INV}, ORR_{IRC}, and ORR_{INV}. Zanu was generally well tolerated; rates of atrial fibrillation were low and consistent with the phase 3 ASPEN and ALPINE studies. These data support the clinical benefit of zanu in frontline management of TN CLL/SLL.

Figure: Progression Free Survival by Independent Review Committee Assessment

