Preliminary Safety and Efficacy of BGB-11417, a Potent and Selective B-Cell Lymphoma 2 (BCL2) Inhibitor, in Patients With Acute Myeloid Leukemia

Jake Shortt,¹ Shuh Ying Tan,² Paul Cannell,³ Teng Fong Ng,⁴ Chun Yew Fong,⁵ Sundra Ramanathan,⁶ Rajeev Rajagopal,⁷ Sophie Leitch,⁸ Robin Gasiorowski,⁹ Carolyn Grove,¹⁰ Douglas Lenton,¹¹ Peter Tan,¹² Courtney DiNardo,¹³ Ming Tat Ling,¹⁴ Si Cheng,¹⁴ Yuan Liu,¹⁴ Melannie Co,¹⁴ Wai Y. Chan,¹⁴ David Simpson,¹⁴ and Andrew H. Wei¹⁵

¹School of Clinical Sciences, Monash University and Monash Health, Heidelberg, Victoria, Australia; ³Fiona Stanley Hospital, New South Wales, Australia; ³Fiona Stanley Hospital, New South Wales, Australia; ⁴Gold Coast University Hospital, New South Wales, Australia; ⁴Gold Coast University Hospital, Southport, Queensland, Australia; ⁴Gold Coast University Hospital, New South Wales, Australia; ⁴Gold Coast University, New South Wales, New South Wales, New South Wales, Australia; ⁴Gold Coast University, New South Wales, New South ⁷Middlemore Hospital, Auckland, New Zealand; ⁸North Shore Hospital, Australia; ¹⁰Concord Repatriation General Hospital, Concord West, New South Wales, Australia; ¹⁰Concord Repatriation General Hospital, New South Wales, Australia; ¹⁰Concord Repatriation, New South Wales, Australia; ¹⁰Concord, New South Wales, New South Wales, Australia; ¹⁰Concord, New South Wales, New South Wales, Australia; ¹⁰Concord, New South Wales, New South Wales ¹²One Clinical Research, Nedlands, Western Australia; Australia; ¹³University of Texas MD Anderson Cancer Centre and Royal Melbourne, Victoria, Australia and BeiGene USA, Inc., San Mateo, CA, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne, Victoria, Australia and BeiGene USA, Inc., San Mateo, CA, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne, Victoria, Australia and BeiGene USA, Inc., San Mateo, CA, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne, Victoria, Australia and BeiGene USA, Inc., San Mateo, CA, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Center, Houston, Texas, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Center, Houston, Texas, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne, Victoria, Australia and BeiGene USA, Inc., San Mateo, CA, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Center, Houston, Texas, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Center, Houston, Texas, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Center, Houston, Texas, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Center, Houston, Texas, USA; and ¹⁵Department of Clinical Haematology, Peter MacCallum Cancer Center, Houston, Texas, USA; and ¹⁵Department, Victoria, Australia and Euler Center, Houston, Texas, USA; and ¹⁵Department, Victoria, Australia and Euler Center, Houston, Texas, USA; and ¹⁵Department, Victoria, Australia and Euler Center, Houston, Texas, USA; and ¹⁵Department, Victoria, Australia and Euler Australia and Euler Center, Houston, Texas, Victoria, Australia and Euler Australia and Euler

INTRODUCTION

- BCL2, a key regulator of apoptosis, is aberrantly expressed in many hematologic malignancies
- Venetoclax-based treatments have improved outcomes in patients with AML who are unfit for induction chemotherapy; however, concerns regarding disease resistance and gastrointestinal/ hematological toxicities remain¹
- BGB-11417 is a potent and highly selective investigational BCL2 inhibitor
- Demonstrated superior antitumor activity compared with venetoclax in preclinical studies² - Favorable pharmacokinetic profile and excellent bioavailability and selectivity for BCL2 (<1 nM)² - Tolerable safety profile at doses up to 640 mg in a phase 1 monotherapy study³
- The safety and efficacy of BGB-11417 plus azacitidine in patients with AML were evaluated in the ongoing BGB-11417-103 study

OBJECTIVES

Primary

• To evaluate safety and tolerability of BGB-11417 in combination with azacitidine, determine RP2D (parts 1 and 2) and efficacy (CR+CRh rate) based on European LeukemiaNet 2017 Response Criteria with assessment of hematologic improvement (part 3)^{4,5}

Secondary

• To assess the PK of BGB-11417 in combination with azacitidine

Exploratory

To assess biomarker characteristics and correlation with efficacy

METHODS

BGB-11417-103 is a phase 1b/2 dose-finding and expansion study of BGB-11417 (novel BCL2 inhibitor) in combination with azacitidine in patients with AML (**Figure 1**)

Figure 1. Study Schema

Eligibility Criteria ■ Aged ≥18 years ■ AML (non-APL) ■ TN unfit for intensive	BGB-11417 (10 d or 28 d with 4-day ramp-up in cycle 1) + Azacitidine (75 mg/m ² for 7 days SC or IV)						
chemotherapy R/R with no prior BCL2 inhibitor or	Part 1 Dose Escalation	Safet	Part 2 y Expansion	RP2D	Part 3 Efficacy Expansion		
azacitidine exposure • ECOG PS 0-2	BGB-11417 Dose	Part 1	Part 2		Part 3		
Not receiving	40 mg × 10 d	3-6 patients	~10 patients		~20 patients		
warfarin; moderate or strong CYP3A4	80 mg × 10 d	3-6 patients	~10 patients				
inhibitor or inducer	160 mg × 10 d	3-6 patients	~10 patients				
within 5 half-lives	160 mg × 28 d	3-6 patients	~10 patients				

Safety Monitoring Committee reviews available patient safety and preliminary efficacy data to determine dose escalation in part 1, dose expansion to part 2, and the final RP2D to start part 3.

Patients were to start allopurinol 2-3 days before first dose, with hospitalization during the ramp-up

- period in cycle 1 and regular laboratory monitoring DLTs were assessed in cycle 1 (Figure 2)
- Patients with DLTs were assessed against the number of patients dosed, and the safety stopping criteria were based on the number of patients with events where posterior probability of event rate exceeding 0.25 was at least 80%
- Response assessments were performed every 3 cycles starting the end of cycle 1
- For patients not in remission, an additional response assessment was performed at the end of cycle 2

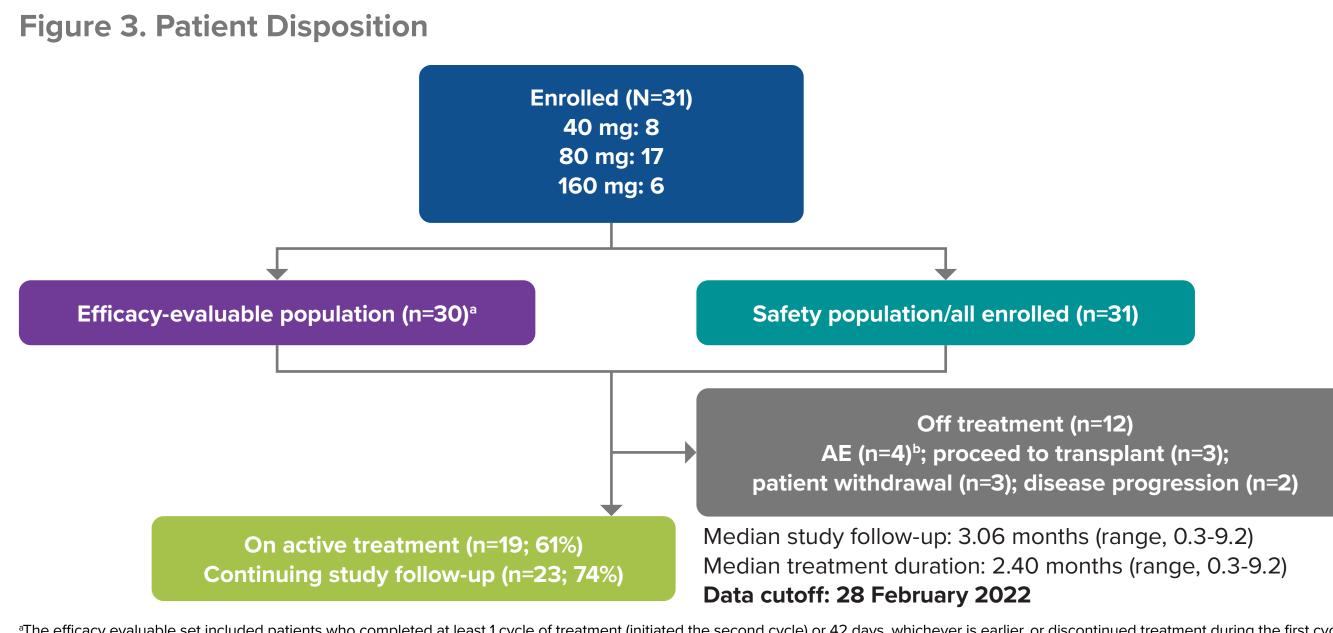

MRD status was assessed by multiparameter flow cytometry at the end of cycle 1 and cycle 4

Figure 2. DLT Observation Window

Nonhematological DL1

D0/1 D28 D42	

RESULTS

^aThe efficacy evaluable set included patients who completed at least 1 cycle of treatment (initiated the second cycle) or 42 days, whichever is earlier, or discontinued treatment during the first cycle. ^bAE leading to treatment discontinuations: infections (bacterial sepsis, pulmonary sepsis, bronchopulmonary aspergillosis), anemia, and thrombocytopenia.

Table 1. Baseline Ch	aracteristics
----------------------	---------------

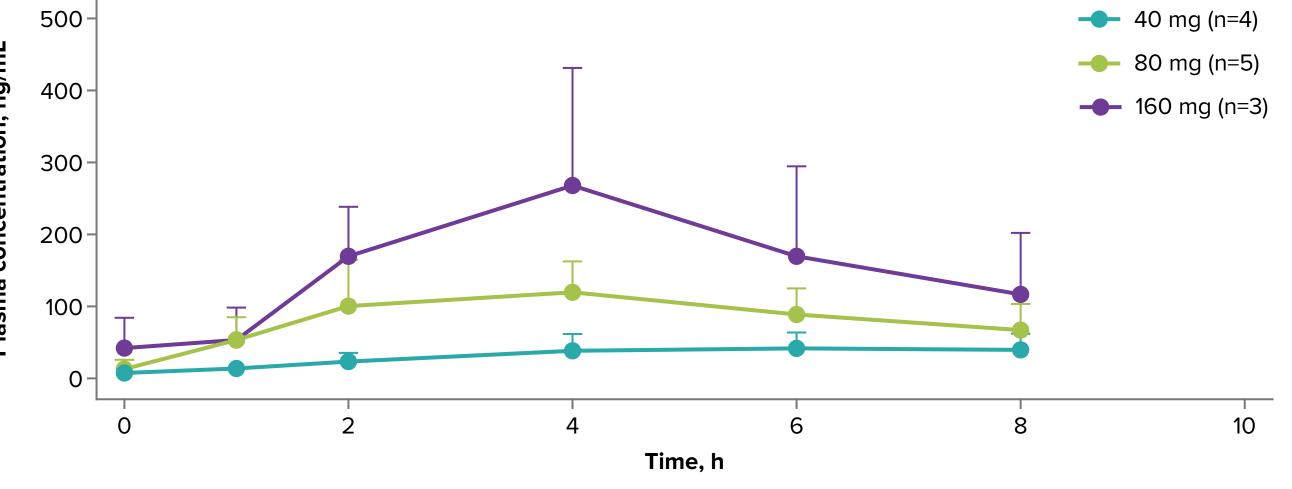

Characteristics	TN (n=19)	R/R (n=12)	All (N=31)
Age, median (range), y	80 (64-87)	69 (36-78)	74 (36-87)
Female sex, n (%)	11 (57.9)	7 (58.3)	18 (58.1)
ECOG PS 0-1, n (%)	16 (84.2)	12 (100)	28 (90.3)
AML type, n (%)			
De novo	18 (94.7)	10 (83.3)	28 (90.3)
Secondary	1 (5.3)	2 (16.7)	3 (9.7)
AML risk stratifications, n (%)			
Favorable	3 (15.8)	1 (8.3)	4 (12.9)
Intermediate	7 (36.8)	5 (41.7)	12 (38.7)
Adverse	8 (42.1)	6 (50.0)	14 (45.2)

Table 2. Treatment Exposure in AML Cohorts

Treatment exposure,		ı × 10 d =8)	_	ı × 10 d =17)		g × 10 d =6)		tal =31)
median (min, max)	BGB-11417	Azacitidine	BGB-11417	Azacitidine	BGB-11417	Azacitidine	BGB-11417	Azacitidine
Duration of exposure, mo	1.31 (0.3, 4.8)	1.31 (0.2, 4.8)	2.96 (0.3, 9.2)	2.96 (0.2, 9.2)	1.95 (0.3, 3.7)	1.99 (0.2, 3.5)	2.40 (0.3, 9.2)	2.33 (0.2, 9.2)
Cycle duration, d		7.8 43.3)	_).0 40.6)	_	1.5 40.0)).0 43.3)
Number of cycles, n		.5 5.0)	3.0 (1.0, 9.0)		2.5 (1.0, 4.0)		3.0 (1.0, 9.0)	

Pharmacokinetics

- azacitidine
- as monotherapy - Steady state C_{max} and AUC₀₋₈ appeared to increase in a dose-dependent manner (**Figure 4**)
- summarized in **Table 3**

Error bars indicate ± standard deviation

Preliminary steady state PK data from patients with AML who received the 40- to 160-mg target doses in combination with

- Steady state exposure (C_{max} and AUC₀₋₈) of BGB-11417 in combination azacitidine were comparable to that of BGB-11417

- Steady state PK parameters were derived by noncompartmental analysis method using nominal sampling time and are

Figure 4. Steady-State Plasma Concentration Profile of BGB-11417

Table 3. Steady-State PK Parameters

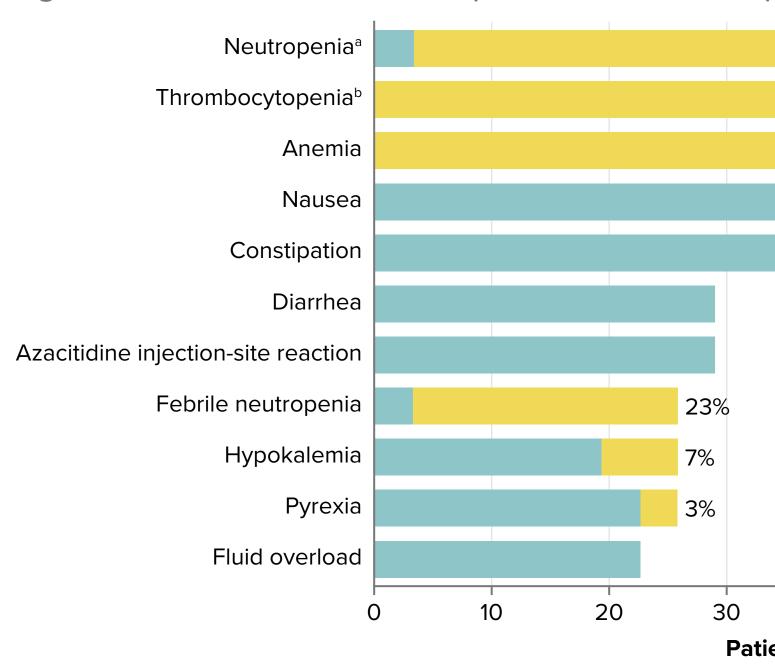

PK parameters	40 mg (n=4)	80 mg (n=5)	160 mg (n=3)
T _{max} , median (range), h	4 (4-6)	4 (2-4)	4 (2-4)
C _{max} , arithmetic mean (SD), ng/mL	62 (63.9)	130 (39.2)	249 (70.4)
AUC ₀₋₈ , arithmetic mean (SD), ng·hr/mL	350 (64.1)	692 (46.3)	1214.6 (66.1)

Table 4. Summary of TEAEs

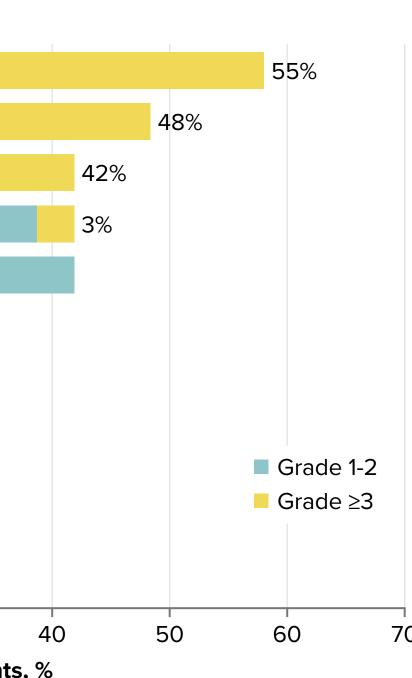
	Total
TEAEs, n (%)	(N=31)
Any TEAE	31 (100.0)
Grade ≥3	27 (87.1)
Serious	22 (71.0)
Leading to treatment discontinuation	
BGB-11417	4 (12.9)ª
Azacitidine	5 (16.1) ^{a,b}
Leading to death	3 (9.7) ^c
Leading to BGB-11417 reduction	1 (3.2) ^d
Leading to azacitidine reduction	1 (3.2) ^e

TEAE leading to discontinuation of azacitidine: injection site reaction (n=' Fatal infections in the setting of AML-related neutropenia (n=2) and disease progression (n=1); all were considered unrelated to study treatment. EAE leading to BGB-11417 dose reduction: neutropenia (n=1) TEAE leading to azacitidine dose reduction: neutrophil count decreased (n=1).

Figure 5. Most Common TEAEs (≥20% for All Grades)

^aTwelve (38.7%) led to cycle delay, 1 (3.2%) study drugs interruption, 1 (3.2%) required dose reduction; among the 17 patients with grade \geq 3 neutropenia, 7 (41.2%) had serious infections and 5 (29.4%) has febrile neutropenia. ^bTwo (6.5%) led to cycle delay, 1 (3.2%) study drugs interruption. TEAEs were according to NCI-CTCAE (v5.0).

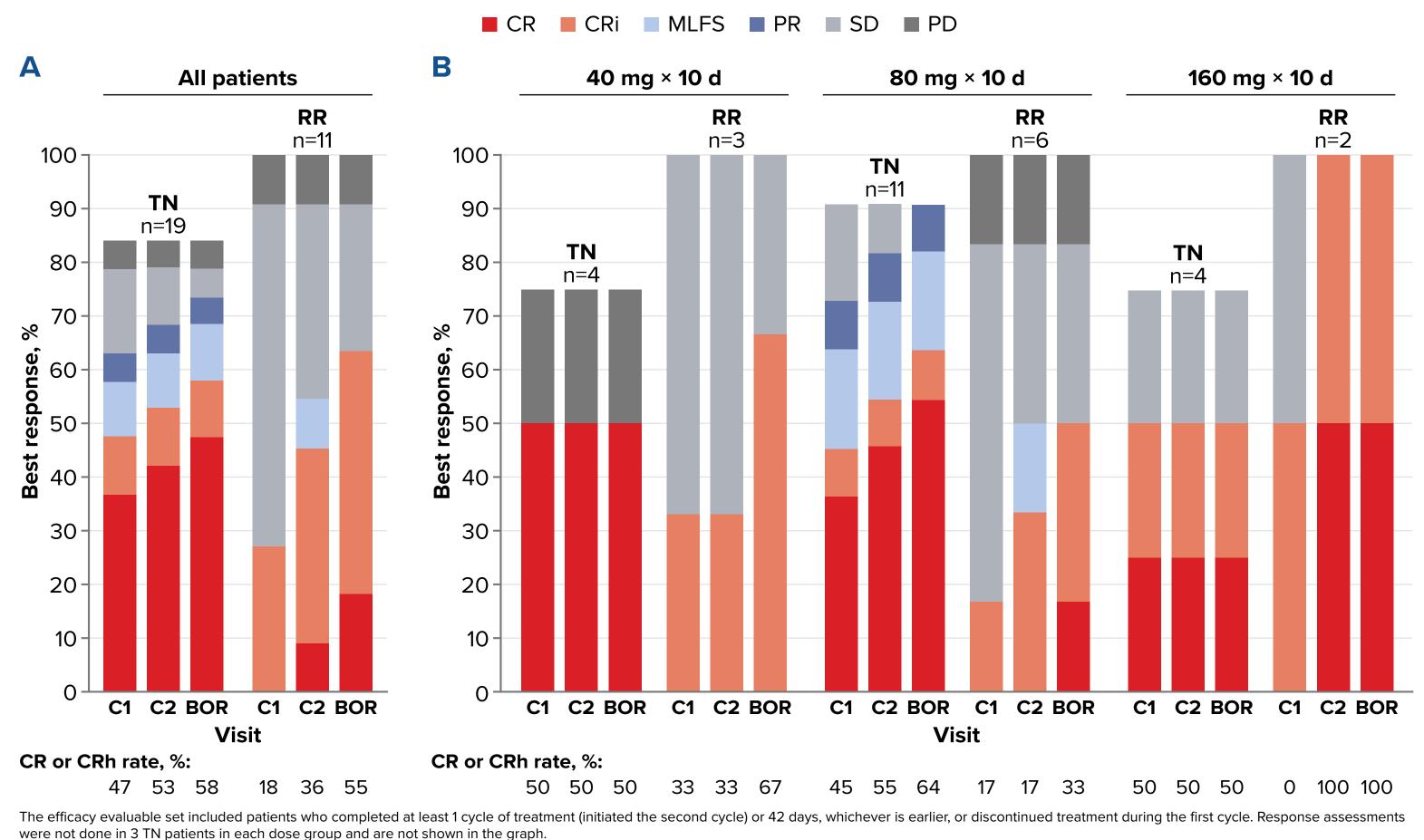
Table 5. Dose-Limiting Toxicity and Tumor Lysis Syndrome

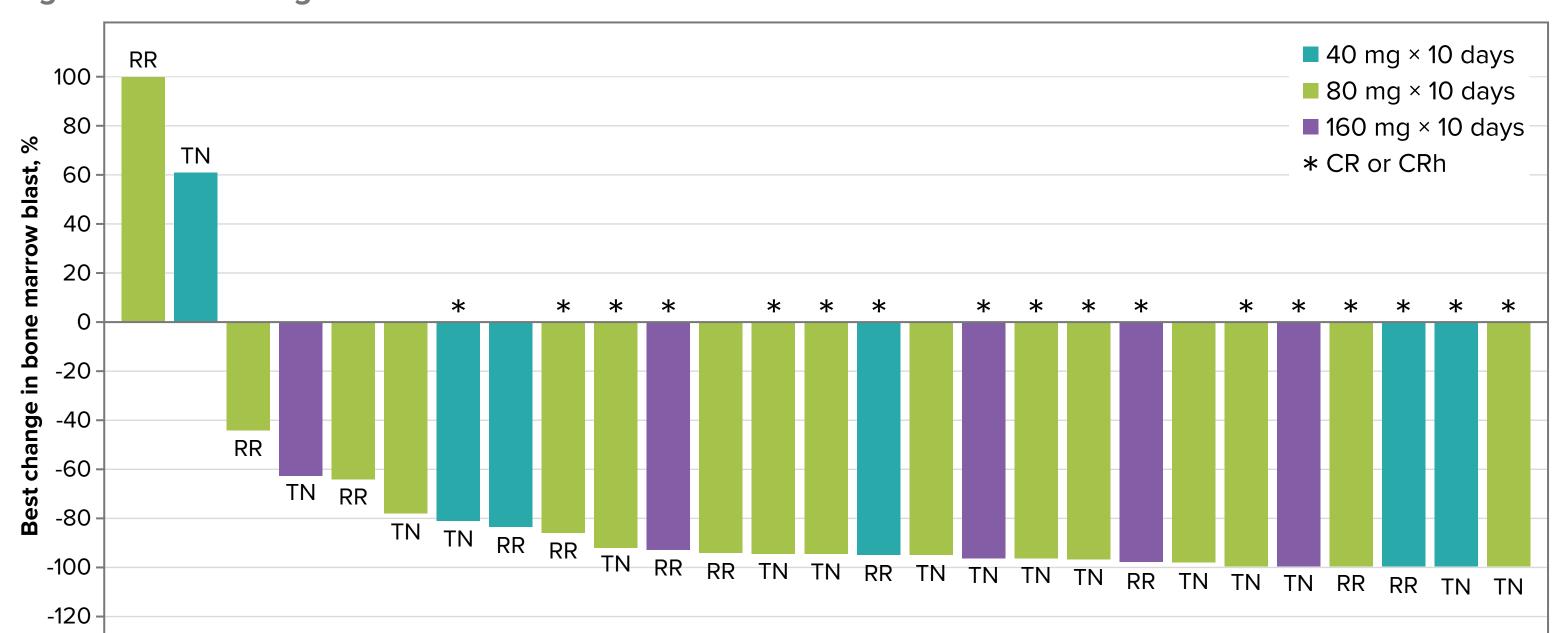

	BGB-11417					
	40 mg × 10 d (n=5)	80 mg × 10 d (n=15)	160 mg × 10 d (n=6)	Total⁵ (N=26)		
DLT,ª n (%)	0	2 (13.3)	0	2 (7.7)		
Hematologic	0	2 (13.3)	0	3 (11.5)		
Grade 4 neutropenia	0	1 (6.7)	0	1 (3.8)		
Grade 4 thrombocytopenia	0	2 (13.3)	0	2 (7.7)		
Nonhematologic (grade ≥3)	0	0	0	0		
Hy's Law	0	0	0	0		
Laboratory TLS, ^c n (%)	0	0	1 (16.7) ^d	1 (3.2)		

Based on DLI evaluable set, which includes patients who completed the DLI observation window and received \geq 80% of the intended cumulative dose. TLS assessment based on the Howard criteria. ^dOccurred on day 4 of cycle 2 in an 85-year-old patient with known chronic kidney disease; he was asymptomatic and recovered after 4 days.

CR/CRh achieved in 58% TN and 55% R/R patients, with most CRs achieved by the end of cycle 1: 11 of 17 CR/CRh and 7 of 11 CRs (**Table 6**, **Figure 6**)

Thirteen patients met CR/CRi with evaluable flow cytometry MRD results, 5 (38.5%) of the 13 achieved MRD negativity (malignant AML < 0.1% per ELN 2018),⁷ and 2 of 5 were MRD negative after 1 cycle of treatment


• Most patients had \geq 80% reduction in bone marrow blast (**Figure 7**)


	40 mg × 10 d		80 mg × 10 d		160 mg × 10 d		Total	
_	TN (n=4)	R/R (n=3)	TN (n=11)	R/R (n=6)	TN (n=4)	R/R (n=2)	TN (n=19)	R/R (n=11)
CR+CRh, n (%)	2 (50)	2 (67)	7 (64)	2 (33)	2 (50)	2 (100)	11 (58)	6 (55)
CR+CRh after 1 cycle	2 (50)	1 (33)	5 (45)	1 (17)	2 (50)	0	9 (47)	2 (18)
CR+CRi, n (%)	2 (50)	2 (67)	7 (64)	3 (50)	2 (50)	2 (100)	11 (58)	7 (64)
MRD evaluable ^a	2	1	6	2	1	1	9	4
MRD negative	1	0	3	1	0	0	4	1
CR	2 (50)	0	6 (55)	1 (17)	1 (25)	1 (50)	9 (47)	2 (18)
CRi	0	2 (67)	1 (9)	2 (33)	1 (25)	1 (50)	2 (11)	5 (46)
ORR (CR+CRi+MLFS+PR), n (%)	2 (50)	2 (67)	10 (91)	3 (50)	2 (50)	2 (100)	14 (74)	7 (64)
MLFS	0	0	2 (18)	0	0	0	2 (11)	0
PR	0	0	1 (9)	0	0	0	1 (5)	0
Time to CR, median, mo	1.31	N/A	1.36	3.75	0.95	1.94	1.31	2.84
Response assessment not done, n (%)	1 (25)	0	1 (9)	0	1 (25)	0	3 (16)	0
BGB-11417 treatment duration, median (range), mo		31 -4.8)		96 -9.2)		95 -3.7)		40 -9.2)

MRD status was determined from the percentage of malignant AML cells in CD45+ cells in the bone marrow as measured by multiparameter flow cytometry (using leukemia-associated immunophenotype-based Different from Normal approach). Lower limit of detection <0.1% in evaluable samples was used as the cut-off per ELN 2018. Flow cytometry MRD results were not available in some patients with CR/CRi due to sample guality issue or pending sample analysis

Abstract P590

CONCLUSIONS

- Preliminary results showed that the 10-day regimen of BGB-11417 (40, 80, 160 mg) plus azacitidine was well tolerated and active in patients with AML across the 3 dose levels tested
- 58% TN and 55% R/R patients with AML met CR+CRh criteria
- Most CRs (7 of 11) were achieved by the end of cycle 1
- Five of 13 (38.5%) evaluable CR/CRi achieved MRD negativity
- Neutropenia (54.8%) was the most common grade \geq 3 AE
- Manageable with growth factor support and dose modification
- DLTs (grade 4 neutropenia/thrombocytopenia) occurred in 2 patients (safety stopping criteria were not met)
- Four patients discontinued study treatment due to AEs
- Three died from unrelated infections (sepsis and aspergillosis)
- One due to treatment-related anemia and thrombocytopenia
- Enrollment in the safety expansion is ongoing; evaluation of 28-day dosing regimen is planned

ABBREVIATIONS

syndrome; T_{max}, time to maximum concentration; TN, treatment naïve.

AE, adverse event; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; AUC, area under the curve; BCL2, B-cell lymphoma 2; BOR, best overall response; C1, end of cycle 1 or day 42; C2, end of cycle 2; C_{max}, maximum concentration; CR, complete remission; CRi, CR with incomplete hematologic recovery; CRh, CR with partial hematologic recovery; CYP3A4, cytochrome P450 3A4; DLT, dose-limiting toxicity; ECOG PS, Eastern Cooperative Oncology Group performance status; ELN, European LeukemiaNet; LAIP, leukemia-associated immunophenotype; MLFS, morphologic leukemia-free state; PK, pharmacokinetics; PD, progressive disease;

5. Bloomfield et al. *Blood* Rev 2018;32(5):416-425

7. Schuurhuis et al. *Blood* 2018;131(12):1275-1291

2018;379(11):1094

6. Howard et al. N Engl J Med 2011;364(19):1844-1854. Erratum in: N Engl J Med

PR, partial remission; R/R, relapsed/refractory; RP2D; recommended phase 2 dose; SD, stable disease; TEAE, treatment-emergent adverse event; TLS, tumor lysis

REFERENCES

. DiNardo et al. *N Engl J Med* 2020;383(7):617-629 2. Nan Hu et al. *Cancer Res* 2020:80(suppl 16):3077 3. Opat et al. EHA 2022. Abstract P687

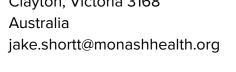
4. Döhner et al. *Blood* 2017;129(4):424-447

DISCLOSURES

JS: consulting role with Astellas, Mundipharma, Novartis; research funding from Astex, Amgen, BMS/Celgene CYF: honoraria from AbbVie, Astellas, Amgen, BMS, Novartis, Pfizer; consulting role with AbbVie, Astellas, Amgen, BMS, Novartis, Pfizer; research funding from Astellas; speakers bureau for AbbVie, Amgen, Pfizer **RR:** stock ownership with CSL Behring; honoraria with AbbVie; consulting role with Janssen

- RG: honoraria from AbbVie, MSD, Astellas, Janssen, Antengene **CG:** advisory board participation for AbbVie and Astellas
- **DL:** employment with Central West Haematology; speakers bureau for Janssen PT: research funding from Novartis, Celgene, Janssen, and Epimab
- **CD:** honoraria from AbbVie, Agios, Genentech, Servier, BMS, Celgene, Novartis, Takeda, Jazz; consulting role with BMS, Celgene, Servier, Kura, GSK, Genmab; research funding from AbbVie, Agios, Servier, BMS, Foghorn, Immune-Onc, Lilly MTL: employment and stock ownership with BeiGene; patents from Davos Life Science Pte Ltd
- SC, YL, MC, DS: employment and stock ownership with BeiGene WYC: employment with BeiGene; stock ownership with BeiGene, BMS

AHW: consulting role with AbbVie, Servier, Pfizer, Roche, Novartis, Astellas, Janssen, Amgen, Gilead, BMS, MacroGenics, Agios; research funding from Novartis, AbbVie, Servier, BMS, Syndax, Atex, AstraZeneca, Amgen; speakers bureau for AbbVie, Novartis, BMS, Astellas; intellectual property interests with the Walter and Eliza Hall Institute of Medical Research PC, TFN, SR, SL, SYT: nothing to disclose


ACKNOWLEDGMENTS

We would like to thank the investigators, site support staff, and especially the patients for participating in this study. This study was sponsored by BeiGene. Editorial support was provided by Bio Connections LLC and funded by BeiGene.

CORRESPONDENCE

AYBRID ANA JUNE 9-17 ANA VIENNA

Jake Shortt, MD, PhD Monash Health and Monash University Monash Medical Centre Level 3, 246 Clayton Road Clayton, Victoria 3168

Copies of this poster obtained through the Quick Response (QR) Code are for personal use and may not be reproduced without permission from EHA® and the author of this poste