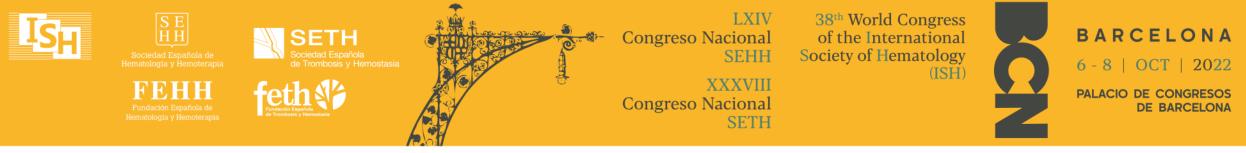
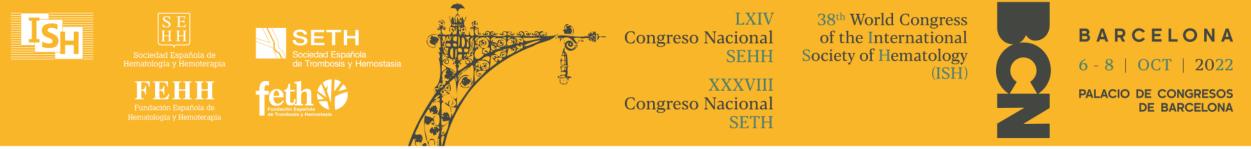


Preliminary Safety and Efficacy of BGB-11417, A Potent and Selective B-Cell Lymphoma 2 (BcI-2) Inhibitor, In Patients With Acute Myeloid Leukemia (AML)

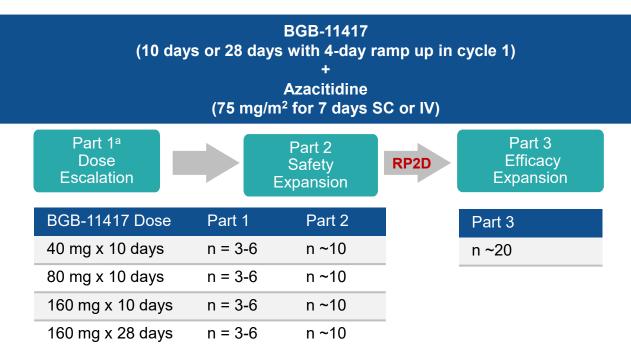

Jake Shortt¹, **Jose Antonio Perez Simon**², Pau Montesinos³, Shuh Ying Tan⁴, Paul Cannell⁵, Teng Fong Ng⁶, Chun Yew Fong⁷, Sundra Ramanathan⁸, Rajeev Rajagopal⁹, Sophie Leitch¹⁰, Robin Gasiorowski¹¹, Carolyn Grove¹², Douglas Lenton¹³, Peter Tan¹⁴, Courtney DiNardo¹⁵, Si Cheng¹⁶, Yuan Liu¹⁶, Melannie Co¹⁶, Wai Y. Chan¹⁶, David Simpson¹⁶, Andrew H. Wei^{14,17}

¹School of Clinical Sciences, Monash University and Monash Health, Clayton, VIC, Australia; ²Hospital Universitario Virgen del Rocío, Sevilla, Spain; ³Hospital Universitari i Politècnic La Fe, València, Spain; ⁴St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ⁵Fiona Stanley Hospital, Murdoch, WA, Australia; ⁶Gold Coast University Hospital, Southport, QLD, Australia; ⁷Austin Health, Heidelberg, VIC, Australia; ⁸The Saint George Hospital-Kogarah, Kogarah, NSW, Australia; ⁹Middlemore Hospital, Auckland, New Zealand; ¹⁰North Shore Hospital, Auckland, New Zealand; ¹¹Concord Repatriation General Hospital, Concord West, NSW, Australia; ¹²Linear Clinical Research & Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ¹³Orange Health Service (Central West Cancer Care Centre), Orange, NSW, Australia; ¹⁴One Clinical Research, Nedlands, WA, Australia; ¹⁵University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁶BeiGene (Shanghai) Co., Ltd., Shanghai, China and BeiGene USA, Inc., San Mateo, CA, USA; ¹⁷Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia


Disclosures for Jose Antonio Perez Simon

Consultant for Gilead, Novartis, Janssen, Alexion, Jazz Pharmaceuticals, Takeda, BMS/Celgene; research support from Takeda, AbbVie, Novartis, Amgen, Janssen; speakers' bureau for and travel support from Gilead, Novartis, Janssen, Alexion, Jazz Pharmaceuticals, Takeda, BMS/Celgene

Introduction


- BCL2, a key apoptosis regulator, is aberrantly expressed in many hematologic malignancies
- Venetoclax-based treatments have improved outcomes in patients with AML who are unfit for induction chemotherapy
 - Disease resistance/relapse and GI/hematological toxicities remain¹
- BGB-11417 is a potent and highly selective investigational Bcl-2 inhibitor
 - Superior antitumor activity compared with venetoclax in preclinical studies²
 - Favorable PK profile and excellent bioavailability and selectivity for Bcl-2 (< 1 nM)²
 - 2,000-fold higher selectivity for Bcl-2 than Bcl-xL²
 - Well tolerated at doses up to 640 mg in a phase 1 monotherapy study³
- The safety and efficacy of BGB-11417 + azacitidine in patients with AML were evaluated in the ongoing BGB-11417-103 study

Study Design

 BGB-11417-103 is a phase 1b/2 dose-finding and expansion study of BGB-11417 in combination with azacitidine in patients with AML

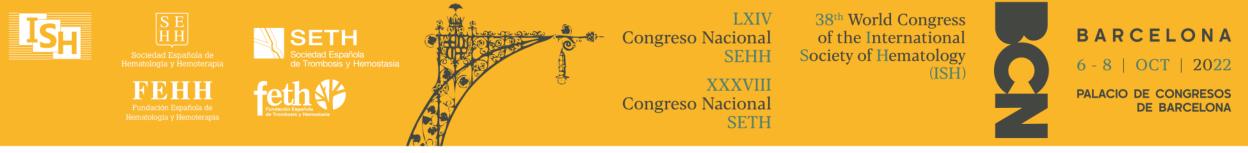
- Aged ≥ 18 years
- AML (non-APL)
- TN unfit for intensive chemotherapy
- R/R with no prior Bcl-2 inhibitor or azacitidine exposure
- ECOG PS 0-2
- Not receiving concurrent CYP3A4 inhibitor or inducer

Primary Objective

 Safety and tolerability of BGB-11417 + azacitidine, determine RP2D (parts 1 - 2) and efficacy (ELN 2017 Response Criteria; part 3)^{1,2}

Secondary Objective

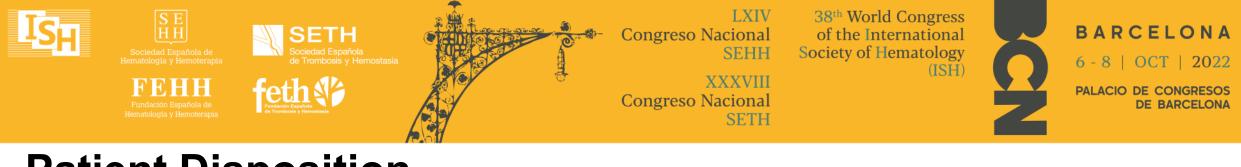
PK of BGB-11417 + azacitidine

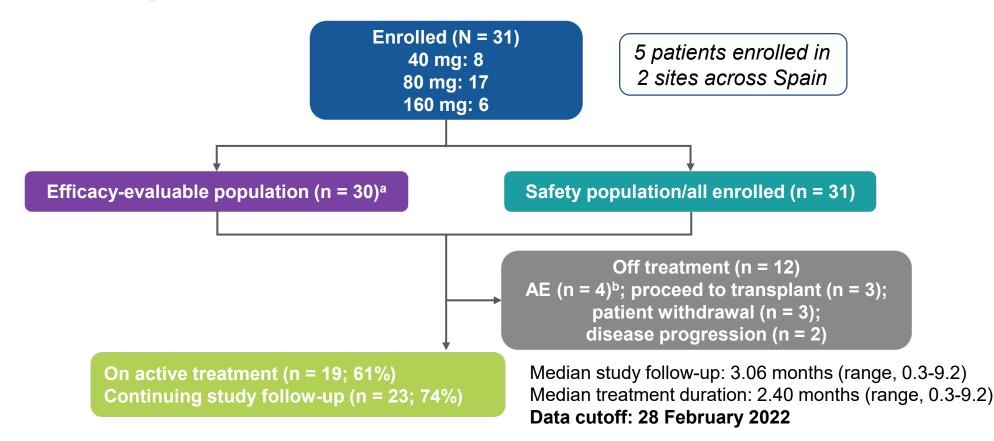

Exploratory Objective

 Biomarker characteristics and correlation with efficacy

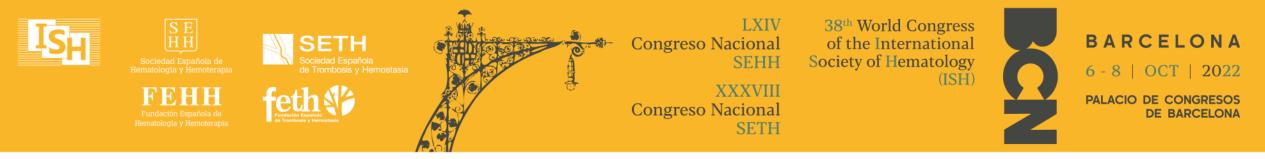
a Safety Monitoring Committee reviews available patient safety and preliminary efficacy data to determine dose escalation in part 1, dose expansion to part 2, and the final RP2D to start part 3.

AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; Bcl-2, B-cell lymphoma 2; CR, complete response; CRh, CR with partial hematologic recovery; CYP3A4, cytochrome P450 3A4; ECOG PS, Eastern Cooperative Oncology Group performance status; ELN, European LeukemiaNet; IV, intravenous; PK, pharmacokinetics; R/R, relapsed/refractory; RP2D, recommended phase 2 dose; SC, subcutaneous; TN, treatment naive.

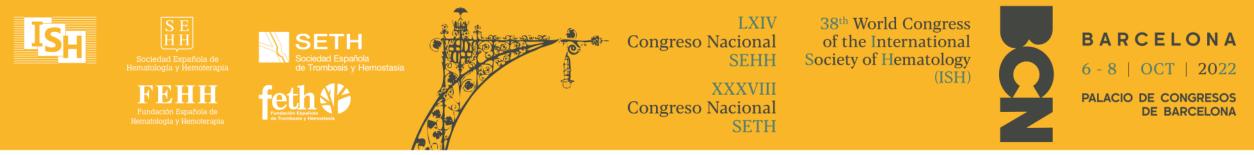

1. Döhner H, et al. *Blood.* 2017;129(4):424-447; 2. Bloomfield C, et al. *Blood Rev.* 2018;32(5):416-425.


Methods

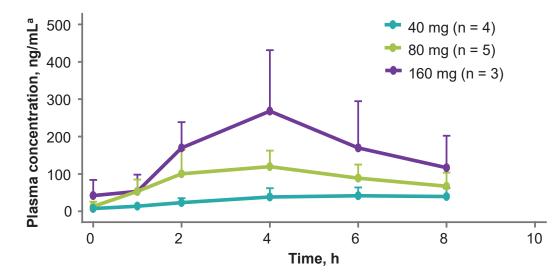
- Tumor lysis syndrome precautions with hospitalization during the ramp-up period
- DLTs were assessed in cycle 1
 - DLTs were assessed against the number of patients dosed
 - Safety stopping criteria were based on the number of patients with events where posterior probability of event rate exceeding 0.25 was at least 80%
- Response assessments were performed every 3 cycles starting at the end of cycle 1
- For patients not in remission, an additional response assessment was performed at the end of cycle 2
- MRD status was assessed by multiparameter flow cytometry at the end of cycles 1 and 4



Patient Disposition



^aThe efficacy evaluable set included patients who completed at least 1 cycle of treatment (ie, initiated the second cycle) or 42 days, whichever is earlier, or discontinued treatment during the first cycle; ^bAE leading to treatment discontinuations: infections (bacterial sepsis, pulmonary sepsis, bronchopulmonary aspergillosis), anemia, and thrombocytopenia. AE, adverse event.

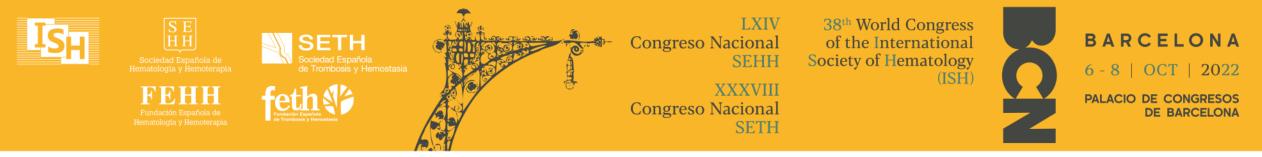


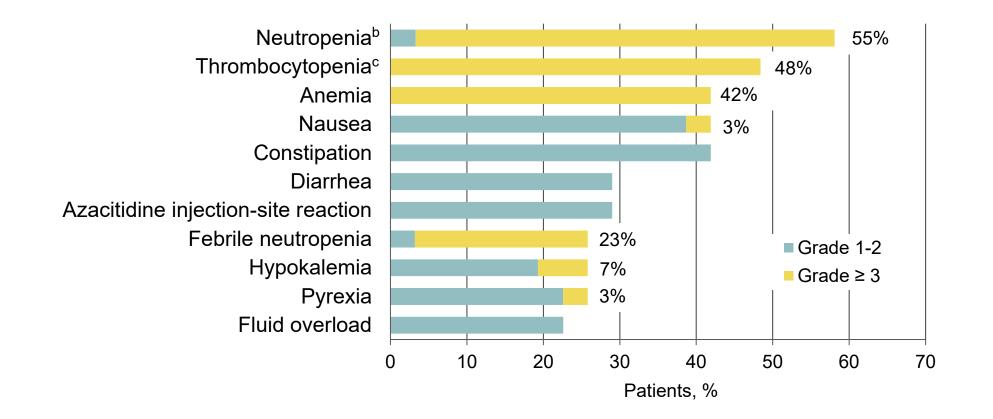
Baseline Characteristics

Characteristics	TN (n = 19)	R/R (n = 12)	All (N = 31)	
Age, median (range), years	80 (64-87)	69 (36-78)	74 (36-87)	
Female, n (%)	11 (57.9)	7 (58.3)	18 (58.1)	
ECOG PS 0-1, n (%)	16 (84.2)	12 (100)	28 (90.3)	
AML type, n (%)				
De novo	18 (94.7)	10 (83.3)	28 (90.3)	
Secondary	1 (5.3)	2 (16.7)	3 (9.7)	
AML risk stratifications, n (%)	· · · ·	· · · ·	· · · · ·	
Favorable	3 (15.8)	1 (8.3)	4 (12.9)	
Intermediate	7 (36.8)	5 (41.7)	12 (38.7)	
Adverse	8 (42.1)	6 (50)	14 (45.2)	

Steady State Plasma Concentration Profile of BGB-11417

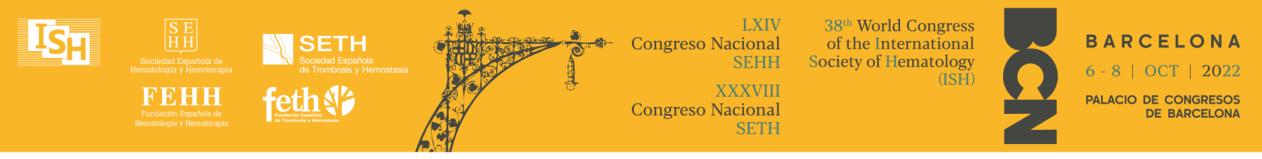
PK parameters	40 mg (n = 4)	80 mg (n = 5)	160 mg (n = 3)
T _{max} , median (range), hours	4 (4-6)	4 (2-4)	4 (2-4)
C _{max} , arithmetic mean (SD), ng/mL	62 (63.9)	130 (39.2)	249 (70.4)
AUC ₀₋₈ , arithmetic mean (SD), ng • hr/mL	350 (64.1)	692 (46.3)	1214.6 (66.1)


- The estimated terminal half-life is approximately 5 hours^b
- Steady state C_{max} and AUC₀₋₈ appeared to increase in a dose-dependent manner
- Steady state C_{max} and AUC₀₋₈ of BGB-11417 in combination with azacitidine were comparable to that of BGB-11417 monotherapy


TEAE Summary

TEAEs, n (%)	Total (N = 31)
Any TEAE	31 (100.0)
Grade ≥ 3	27 (87.1)
Serious	22 (71.0)
Leading to treatment discontinuation	
BGB-11417	4 (12.9) ^a
Azacitidine	5 (16.1) ^{a,b}
Leading to death	3 (9.7) ^c
Leading to BGB-11417 reduction	1 (3.2) ^d
Leading to azacitidine reduction	1 (3.2) ^e

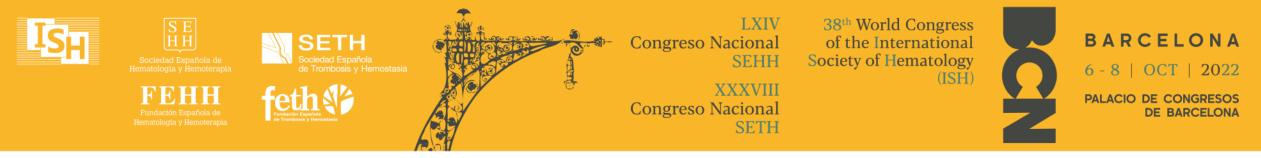
^aTEAEs leading to discontinuation of both study drugs: fatal infections (n = 3; bacterial sepsis, bronchopulmonary aspergillosis, pulmonary sepsis), anemia and thrombocytopenia (n = 1); ^bTEAE leading to discontinuation of azacitidine: injection site reaction (n = 1); ^cFatal infections in the setting of AML-related neutropenia (n = 2) and disease progression (n = 1), all were considered unrelated to study treatment; ^dTEAE leading to BGB-11417 dose reduction: neutropenia (n = 1); ^eTEAE leading to azacitidine dose reduction: neutrophil count decreased (n = 1). AML, acute myeloid leukemia; TEAE, treatment-emergent adverse event.



Most Common TEAEs^a (≥ 20% for All Grades)

^aTEAEs were assessed according to NCI-CTCAE (v5.0); ^b12 (38.7%) led to cycle delay, 1 (3.2%) to study drug interruption, 1 (3.2%) required dose reduction; among 17 patients with Grade \geq 3 neutropenia, 7 (41.2%) had serious infections and 5 (29.4%) had febrile neutropenia; ^c2 (6.5%) led to cycle delay, 1 (3.2%) to study drug interruption.

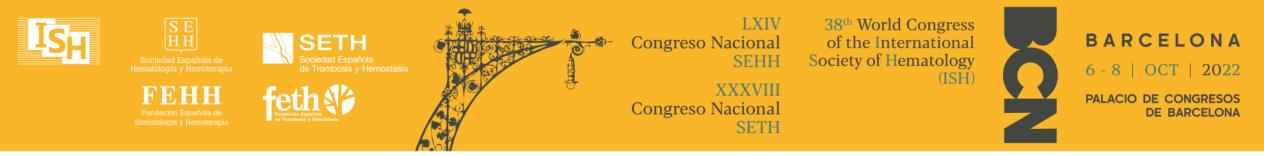
NCI-CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events; TEAE, treatment-emergent adverse event.

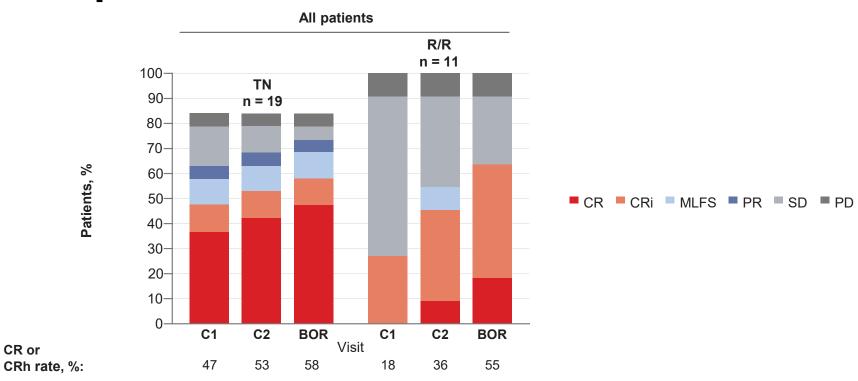


Dose-Limiting Toxicity and Tumor Lysis Syndrome

	BGB-11417					
	40 mg × 10 days (n = 5)	80 mg × 10 days (n = 15)	160 mg × 10 days (n = 6)	Total ^b (N = 26)		
DLT, n (%)ª	0	2 (13.3)	0	2 (7.7)		
Hematologic	0	2 (13.3)	0	2 (7.7)		
Grade 4 neutropenia	0	1 (6.7)	0	1 (3.8)		
Grade 4 thrombocytopenia	0	2 (13.3)	0	2 (7.7)		
Nonhematologic (Grade ≥ 3)	0	0	0	0		
Hy's Law	0	0	0	0		
Laboratory TLS, n (%) ^c	0	0	1 (16.7) ^d	1 (3.2)		

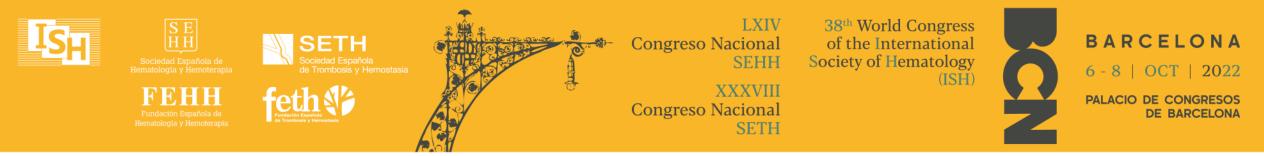
^aDLT was assessed through cycle 1 day 28 (nonhematologic) and up to day 42 or initiation of cycle 2 (hematologic); ^bBased on DLT evaluable set, which includes patients who completed the DLT observation window and received ≥ 80% of the intended cumulative dose; ^cTLS assessment based on the Howard criteria¹; ^dOccurred on day 4 of cycle 2 in an 85-year-old patient with known chronic kidney disease. He was asymptomatic and recovered after 4 days. DLT, dose-limiting toxicity; TLS, tumor lysis syndrome.

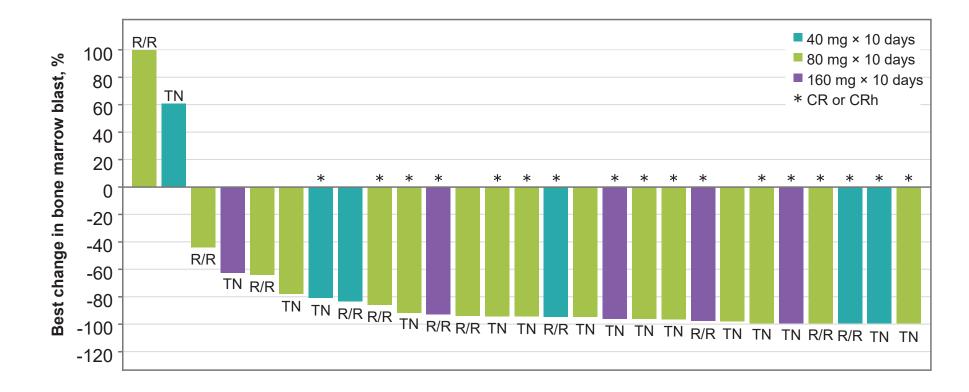

1. Howard C, et al. N Engl J Med. 2011;364(19):1844-1854. Erratum in: N Engl J Med. 2018;379(11):1094.


Best Overall Response

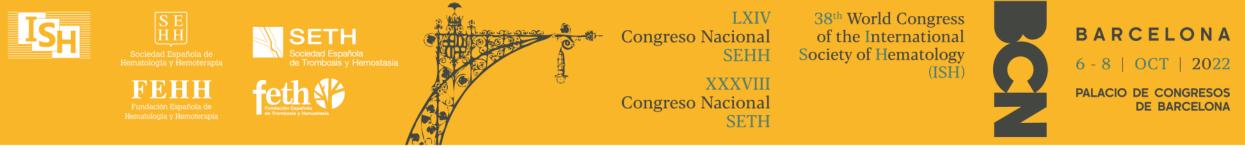
	40 mg ×	40 mg × 10 days		80 mg × 10 days		160 mg × 10 days		Total	
	TN (n = 4)	R/R (n = 3)	TN (n = 11)	R/R (n = 6)	TN (n = 4)	R/R (n = 2)	TN (n = 19)	R/R (n = 11)	
ORR (CR + CRi + MLFS + PR), n (%)	2 (50)	2 (67)	10 (91)	3 (50)	2 (50)	2 (100)	14 (74)	7 (64)	
CR + CRh, n (%)	2 (50)	2 (67)	7 (64)	2 (33)	2 (50)	2 (100)	11 (58)	6 (55)	
CR + CRi, n (%)	2 (50)	2 (67)	7 (64)	3 (50)	2 (50)	2 (100)	11 (58)	7 (64)	
CR	2 (50)	0	6 (55)	1 (17)	1 (25)	1 (50)	9 (47)	2 (18)	
Time to CR, median, months	1.31	N/A	1.36	3.75	0.95	1.94	1.31	2.84	
BGB-11417 treatment duration, median (range), months		1.31 (0.3-4.8)		2.96 (0.3-9.2)		1.95 (0.3-3.7)		2.40 (0.3-9.2)	

CR, complete response; CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; MLFS, morphologic leukemia-free state; ORR, overall response rate; PR, partial response; R/R, relapsed/refractory; TN, treatment naive.

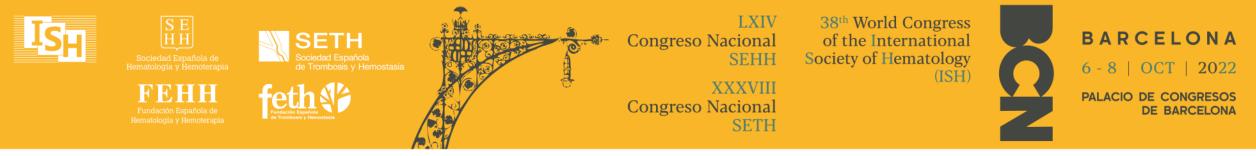

Best Overall Response Over Time


Most CRs were achieved by the end of cycle 1

BOR, best overall response; C, cycle; CR, complete response; CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; MLFS, morphologic leukemia-free state; PD, progressive disease; PR, partial response; R/R, relapsed/refractory; SD, stable disease; TN, treatment naive.


The efficacy evaluable set included patients who completed at least 1 cycle of treatment (initiated the second cycle) or 42 days, whichever is earlier, or discontinued treatment during the first cycle. Response assessments were not done in 3 TN patients in each dose group and are not shown in the graph.

Best Change from Baseline in Bone Marrow Blasts



• Most patients had \geq 80% reduction in bone marrow blasts

Conclusions

- Preliminary results show that the 10-day BGB-11417 (40, 80, 160 mg) + azacitidine regimen was well tolerated and active in AML patients across 3 dose levels
 - 58% of TN and 55% of R/R patients met CR + CRh criteria
 - Most CRs (7 of 11) were achieved by the end of cycle 1
 - Neutropenia (54.8%) was the most common Grade ≥ 3 AE, which was manageable with growth factor support and dose modification
 - DLTs occurred in 2 patients^a (safety stopping criteria were not met)
 - Four patients discontinued study treatment due to AEs
 - One from treatment-related anemia and thrombocytopenia
 - Three died from unrelated infections (sepsis and aspergillosis)
 - Enrollment in the safety expansion is ongoing; evaluation of a 28-day dosing regimen is planned

Acknowledgments

We would like to thank the investigators, site support staff, and especially the patients and their caregivers for participating in this study.

This study was sponsored by BeiGene.

Editorial support was provided by Medical Expressions and funded by BeiGene.

Correspondence: josea.perez.simon.sspa@juntadeandalucia.es