A Phase 1 Study With the Novel Bcl-2 Inhibitor BGB-11417 as Monotherapy or in Combination With Zanubrutinib in Patients With B-cell Malignancies: Preliminary Data

Stephan Stilgenbauer¹, Stephen Opat^{2,3}, Chan Y. Cheah⁴⁻⁶, Masa Lasica⁷, Emma Verner^{8,9}, Peter J. Browett¹⁰, Henry Chan¹¹, Jacob D. Soumerai¹², Eva González Barca¹³, James Hilger¹⁴, Yiqian Fang¹⁴, David Simpson¹⁴, Constantine S. Tam^{3,15}

¹University of Ulm, Ulm, Germany; ²Monash Health, Clayton, VIC, Australia; ³Monash University, Clayton, VIC, Australia; ⁴Sir Charles Gairdner Hospital and Pathwest Laboratory Medicine, Nedlands, WA, Australia; ⁵Medical School, University of Western Australia, Crawley, WA, Australia; ⁶Linear Clinical Research, Nedlands, WA, Australia; ⁷St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ⁸Concord Repatriation General Hospital, Concord, NSW, Australia; ⁹University of Sydney, NSW, Australia; ¹⁰Auckland City Hospital, Auckland, New Zealand; ¹¹North Shore Hospital Auckland, New Zealand; ¹²Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; ¹³Institut Català d'Oncologia-Hospitalet, IDIBELL, Universitat de-Barcelona, Barcelona, Spain; ¹⁴BeiGene (Beijing) Co., Ltd., Beijing, China, and BeiGene USA, Inc., San Mateo, CA, USA; ¹⁵The Alfred Hospital, Melbourne, VIC, Australia

Disclosures for Stephan Stilgenbauer

Advisory board honoraria, research support, travel support, speaker fees, or travel participation provided by AbbVie, Acerta, Amgen, AstraZeneca, BeiGene, BMS, Celgene, Genentech, Gilead, GSK, Hoffmann-La Roche, Incyte, Infinity, Janssen, Novartis, Pharmacyclics, Sunesis

Introduction

- BGB-11417 was developed as a potent and highly selective inhibitor of Bcl-2¹
 - The currently approved Bcl-2 inhibitor, venetoclax, is approved for the treatment of patients with CLL/SLL and AML²
 - Treatment with venetoclax can be limited by common gastrointestinal toxicities, neutropenia, and the emergence of specific BCL2 mutations around the BH3-binding groove, resulting in resistance^{3,4}
 - Antitumor activity of BGB-11417 appeared to be more potent than venetoclax in human ALL, MCL, and DLBCL in xenograft mouse models¹
 - BGB-11417 has a favorable pharmacokinetic profile with excellent bioavailability and selectivity for Bcl-2 at a concentration of < 1 nM¹
 - Toxicology studies (data on file) have shown BGB-11417 to have a broad therapeutic index and tolerable safety profile

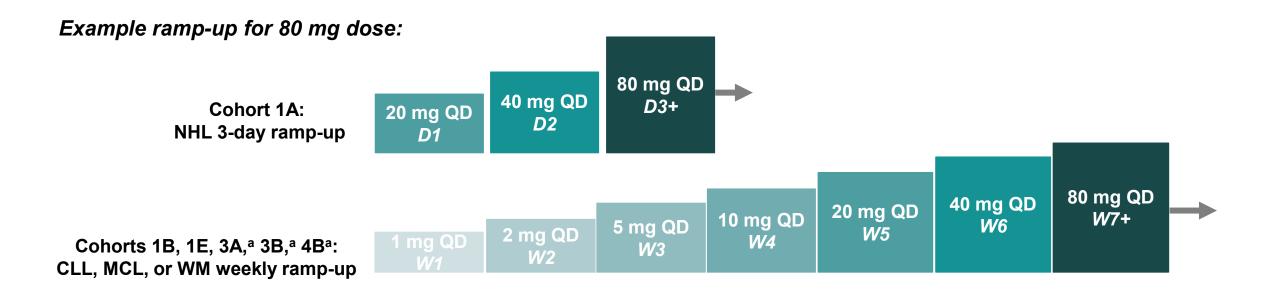
Introduction (2)

- The combination of venetoclax and the BTK inhibitor, ibrutinib, is tolerable and provides potent activity
 in patients with CLL¹⁻³ or MCL⁴
- Zanubrutinib is a next-generation BTK inhibitor that elicited excellent activity and favorable toxicity in patients with CLL/SLL⁵ or MCL⁶; it is currently approved for the treatment of MCL, MZL, and WM⁷
 - Early safety data show that combining zanubrutinib with venetoclax in patients with TN CLL/SLL appears to be tolerable.⁸ Additionally, promising safety and efficacy were seen with the combination of zanubrutinib, obinutuzumab, and venetoclax in patients with CLL⁹ or MCL¹⁰
- Here, we report preliminary results of the BGB-11417-101 trial (NCT04277637) in patients with NHL, WM, or CLL/SLL treated with BGB-11417 monotherapy or BGB-11417 in combination with zanubrutinib

Study Design

Monotherapy Cohorts Part 1: Dose escalation **Part 2: Expansion** RP2D (BGB-11417 monotherapy) (BGB-11417 monotherapy) Cohort **Population** Disease Planned n **Cohort Population** Planned n Disease RP2D per cohort will be R/R Indolent NHL NHL decided based on SMC 2A 10 (food effect) (FL, MZL) 1A R/R (FL. DLBCL. MZL. 15-30 review of available safety and activity data or transformed NHL) Aggressive NHL R/R 2B (DLBCL, transformed 10 (food effect) R/R NHL) 1B CLL/SLL 15-30 (low TLS risk) R/R 2C CLL/SLL 20 (low TLS risk) R/R 1C CLL/SLL 3-6 R/R (high TLS riska) 2D CLL/SLL 10 (high TLS riska) 1D R/R MCL 3-6 R/R CLL/SLL 2E 10 (prior ven) 1E R/R WM 3-6 2F R/R MCL 20 2G R/R WM 20 **Combination Cohorts** Part 3: Dose finding Part 2: Expansion RP2D (BGB-11417 + zanubrutinib combination) (BGB-11417 + zanubrutinib combination) **Cohort Population** Disease Planned n **Cohort Population Disease** Planned n RP2D per cohort will be decided based on SMC CLL/SLL 3A R/R 15-30 R/R CLL/SLL 30 4A review of available 3B R/R MCL 3-6 safety and activity data CLL/SLL 4B TN 20

4C


R/R

MCL

20

Dose Escalation and Target Dose Ramp-Up Schemas

- Cohorts of ≥ 3 patients assigned to planned oral doses of BGB-11417: 40, 80, 160, 320, or 640 mg
- To protect against potential TLS, all patients received a dose ramp-up to the target dose level
- DLTs assessed from ramp-up through day 21 at the intended daily dose and evaluated by bayesian logistic regression model, were used to determine the MTD

Dose-Limiting Toxicity

- DLTs consisted of the following events that were without a clear alternative cause to study treatment and were assessed and graded per protocol-specified guidelines
- For patients meeting eligibility criteria, but also exhibiting any DLT-qualifying events at baseline, toxicity must have worsened by ≥ 1 grade during the DLT window to be considered a DLT

Hematologic Toxicity

- Grade ≥ 3 febrile neutropenia
- Grade ≥ 3 thrombocytopenia that resulted in clinically significant bleeding
- Any Grade ≥ 4 heme toxicity with the following exceptions:
 - Grade 4 neutropenia lasting ≤ 7 days with or without treatment
 - Grade 4 lymphopenia
 - Grade 4 leukopenia

Non-Hematologic Toxicity

- Any Grade ≥ 3 non-hematologic toxicity except for:
 - Laboratory TLS as defined by Howard criteria¹ that resolved (≤ Grade 1 or baseline) in ≤ 3 days^a
 - TLS-related laboratory AEs (ie, hyperuricemia, hyperphosphatemia, hyperkalemia, and/or hypocalcemia) that resolve (≤ Grade 1 or baseline) in ≤ 3 days with or without treatment
 - Grade 3 gastrointestinal toxicity (ie, nausea, vomiting, diarrhea) unless unresponsive to treatment for ≥ 7 days
 - Asymptomatic biochemical laboratory abnormalities that resolve (≤ Grade 1 or baseline) in ≤ 7 days

Patient and Disease Characteristics

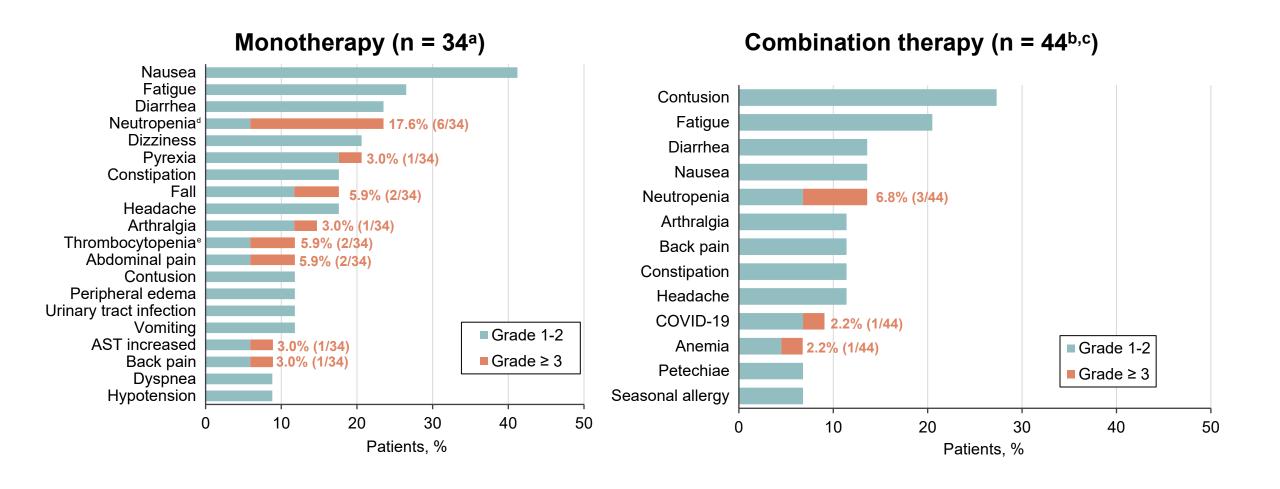
Characteristic	BGB-11417 monotherapy (n = 34)	BGB-11417 + zanubrutinib combination (n = 44)	All patients (N = 78)
Age, median (range), years	72 (55-86)	61 (36-84)	65 (36-86)
ECOG PS, n (%)			
Unknown	1 (2.9)	1 (2.3)	2 (2.6)
0	14 (41.2)	27 (61.4)	41 (52.6)
1	16 (47.1)	15 (34.1)	31 (39.7)
2	3 (8.8)	1 (2.3)	4 (5.1)
Disease type, n (%)			
CLL	6 (17.6)	34 (77.3)	40 (51.3)
R/R DLBCL	17 (50)	N/A	17 (21.8)
R/R FL	6 (17.6)	N/A	6 (7.7)
R/R MZL	3 (8.8)	N/A	3 (3.8)
MCL	0	10 (22.7)	10 (12.8)
WM	2 (5.9)	N/A	2 (2.6)
TN, n (%)	0	14 (31.8)	14 (17.9)
R/R, n (%)	34 (100.0)	30 (68.2)	64 (82.1)
Prior lines of therapy, median (range)	2 (1-6)	1 (1-2)	1 (0-6)
Time from end of most recent systemic therapy to first dose, median (range), months	5.3 (0-49.7)	43.4 (1.6-194.4)	10.8 (0-194.4)

Overall Adverse Events

AEs, n (%)	BGB-11417 monotherapy (n = 34 ^a)	BGB-11417 + zanubrutinib combination (n = 44 ^{b,c})	All patients (N = 78)
Any AEs	32 (94.1)	34 (77.3)	66 (84.6)
Grade ≥ 3 AEs	14 (41.2)	7 (15.9)	21 (26.9)
Serious AEs	11 (32.4)	5 (11.4)	16 (20.5)
Leading to death	2 (5.9) ^d	1 (2.3) ^e	3 (3.8)
Leading to hold of BGB-11417	5 (14.7) ^f	1 (2.3) ^g	6 (7.7)
Leading to dose reduction of BGB-11417	0	0	0
Leading to discontinuation of BGB-11417	1 (2.9) ^h	0	1 (1.3)

DLTs in Dose-Escalation Cohorts

Monotherapy

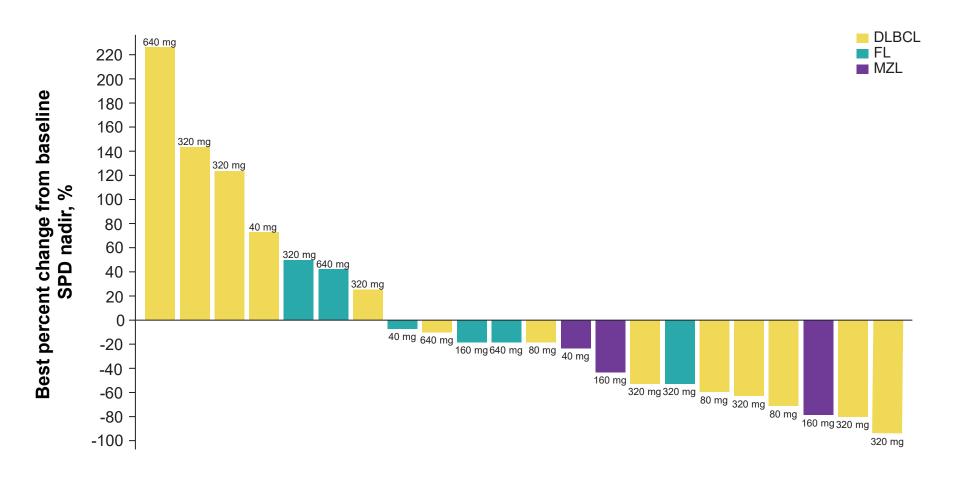

- Dose escalation was completed for cohort 1A, with no MTD reached through 640 mg
 - 1 DLT at 160 mg (Grade 3 febrile neutropenia)
- Dose escalation continues for all other monotherapy dose-escalation cohorts
 - 1 DLT at 80 mg (Grade 4 neutropenia); patient with R/R CLL recovered and continued dosing

Combination Therapy

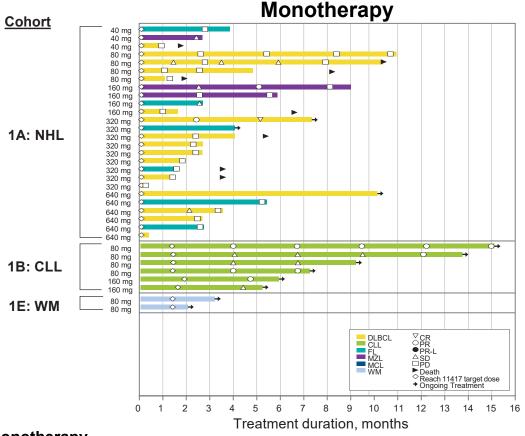
- Dose escalation continues for all cohorts, with no DLTs yet up to 160 mg (CLL) or 80 mg (MCL)
- Cohort 4B (TN CLL expansion) was opened at 160 mg; owing to tolerability and promising activity seen during
 dose escalation, additional dose levels may potentially be expanded

	40 mg ^a	80 mg	160 mg	320 mg	640 mg
Cohort	Monotherapy				
NHL (1A)	0/3	0/4	1/4	0/9	0/6
CLL (1B)	N/A	1/4	TBD	TBD	TBD
WM (1E)	N/A	TBD	TBD	TBD	TBD
			Combination		
CLL (3A)	0/4	0/3	0/3	TBD	TBD
MCL (3B)	N/A	0/3	TBD	TBD	TBD

TEAEs Regardless of Causality in ≥ 3 Patients

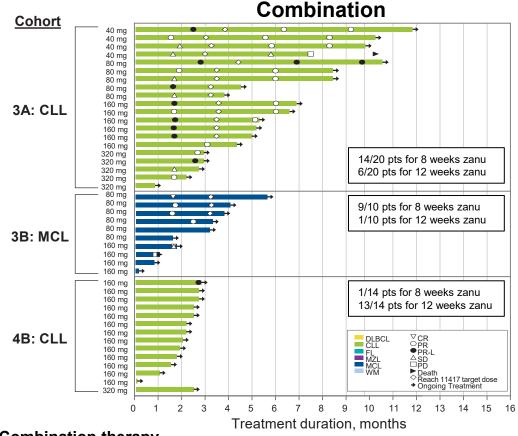


Bcl-2 Inhibitor Events of Interest


- One patient with CLL receiving monotherapy with high baseline TLS risk had a marked tumor flare on BTK inhibitor withdrawal and developed laboratory TLS in a late ramp-up
 - The patient experienced no sequelae from laboratory TLS and resolved by the next day;
 BGB-11417 did not need to be withheld
- Neutropenia was observed in 8 patients receiving monotherapy (n = 6, Grade ≥ 3;
 n = 5 received growth factor) and 6 patients receiving combination therapy (n = 3 Grade ≥ 3;
 n = 4 received growth factor). All cases resolved without dose reduction

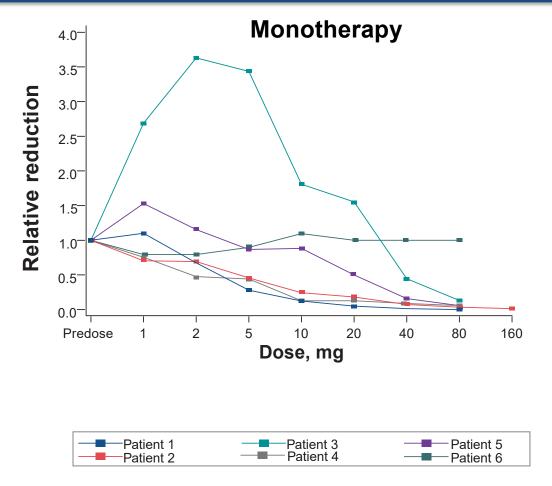
SPD Change in Patients with NHL

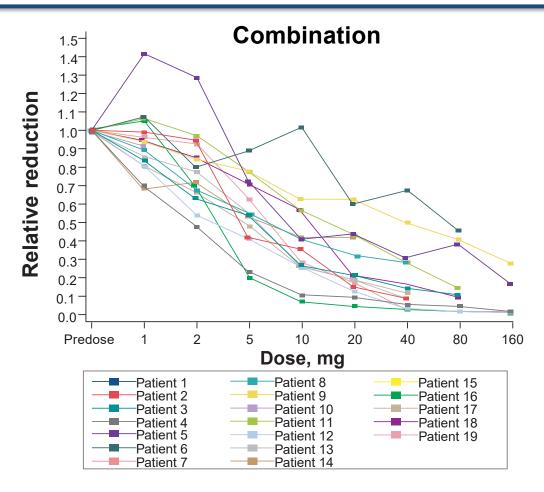
Significant reductions in the SPD from baseline were seen in most patients



Duration of Treatment and Best Response

Monotherapy


- NHL (R/R): 2 of 20 (10%) responded, 1 PR (160 mg) and 1 CR (320 mg)
- WM (R/R): limited follow-up; 1 of 2 (50%) with minor responses (80 mg)
- CLL/SLL (R/R): 4 of 6 (67%) achieved PR-L or better at either 80 or 160 mg



Combination therapy

- MCL (R/R): 5 of 10 (50%) have achieved PR or better so far at either 80 or 160 mg, including 1 CR at each dose level
- CLL/SLL (R/R): 16 of 20 (80%) achieved PR-L or better across all doses
- CLL/SLL (TN): limited follow-up, most still on zanubrutinib pretreatment

Activity of BGB-11417

Significant reduction in ALC was noted among all patients with CLL during ramp-up, with reduction in lymphocytes
noted at dose levels as low as 1 mg

Conclusions

- These early phase 1 results suggest that BGB-11417 is tolerable in patients with CLL or NHL at the dose levels tested
 - Dose escalation concluded for monotherapy patients with NHL with only 1 DLT seen and no MTD reached;
 only 1 DLT was seen in monotherapy patients with CLL
 - Grade ≥ 3 AEs have been infrequent and manageable
 - Findings so far suggest that the combination of BGB-11417 and zanubrutinib is well tolerated, similar to BGB-11417 monotherapy
 - Risk of TLS appears limited and manageable: laboratory TLS has been seen in only 1 patient with high TLS-risk CLL receiving monotherapy
- Transient neutropenia was the most frequent Grade ≥ 3 AE
- Substantial decreases in ALC have been seen during ramp-up in patients with CLL, with promising early response rates in patients with R/R CLL

BGB-11417-101 Sites

• We have the following sites in the DACH Region

Site Number	PI Name	Site
049042	Dr. Stephan Stilgenbauer	Universitaetsklinikum Ulm, Innere Medizin III, Albert-Einstein-Allee 23, Ulm, Baden Wurtenberg
049072	Dr. Barbara Eichhorst	University Hospital Cologne, Department I Internal Medicine, Kerpener Straße 62, 50937 Köln (Cologne)
049074	Dr. Johannes Schetelig	Universitätsklinikum Dresden, Medizinische Klinik I Haus 31, Fetscherstrasse 74, Dresden
049075	Dr. Clemens Wendtner	München Klinik Schwabing, Klinik für Hämatologie, Onkologie, Immunologie, Palliativmedizin, Infektiologie und Tropenmedizin Kölner Platz München 80804

Acknowledgements

We would like to thank the investigators, site support staff, and especially the patients and their caregivers for participating in this study.

This study was sponsored by BeiGene.

Editorial support was provided by Medical Expressions and funded by BeiGene.

Correspondence: <u>Stephan.Stilgenbauer@uniklinik-ulm.de</u>