Safety and Activity of the Highly Specific BTK Inhibitor, BGB-3111 Plus Obinutuzumab in Patients with Follicular Lymphoma and Chronic Lymphocytic Leukemia

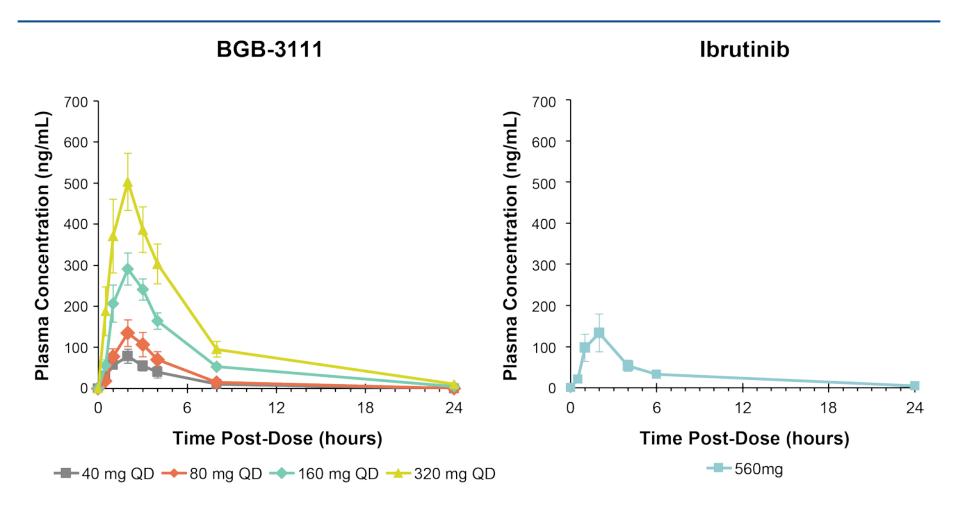
Constantine S. Tam,^{1,2,3} Hang Quach,^{1,2} Andrew Nicol,⁴ Xavier Badoux,⁵ Hannah Rose,⁶ Henry Miles Prince,⁷ Michael F. Leahy,⁸ Richard Eek,⁹ Nicholas Wickham,¹⁰ Sushrut Patil,¹¹ Jane Huang,¹² Xiaoping Zhang,¹² Lai Wang,¹³ Eric Hedrick,¹² William Novotny,¹² Ian Flinn¹⁴

¹St. Vincent's Hospital, Melbourne, Australia; ²University of Melbourne, Parkville, Australia; ³Peter MacCallum Cancer Centre, Melbourne, Australia; ⁴Brisbane Clinic for Lymphoma, Myeloma, and Leukaemia, Brisbane, Australia; ⁵St. George Hospital, Australia ⁶University Hospital Geelong, Australia; ⁷St. Frances Xavier Cabrini Hospital, Australia; ⁸Royal Perth Hospital, Australia; ⁹Border Medical Oncology Research Unit, Australia; ¹⁰Ashford Cancer Centre Research, Australia; ¹¹The Alfred Hospital, Australia; ¹²BeiGene USA, Cambridge, MA, USA; ¹³BeiGene Company Ltd, Beijing, China; and ¹⁴Tennessee Oncology, PLLC, Nashville, TN, USA.

Disclosures

- C Tam, H Quach, A Nicol, H Rose, M Leahy, R Eek, N Wickham, S Patil, and I Flinn have no relevant financial relationships to disclose.
- X Badoux: Roche
- H Prince: Janssen and Celgene
- J Huang, X Zhang, L Wang, E Hedrick, and W Novotny are employed by BeiGene

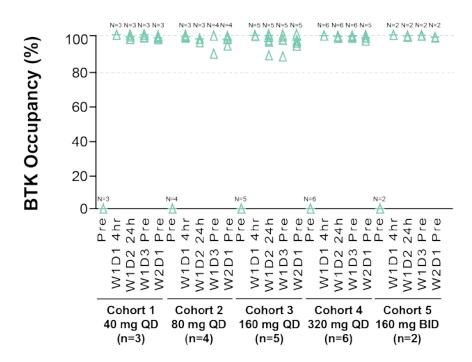
Background


- Bruton's Tyrosine Kinase (BTK) plays a critical role in B cell receptor signaling, which mediates B cell proliferation, migration, and adhesion¹⁻³
 - B cell receptor signaling pathway members are frequently mutated in FL⁴
- Ibrutinib, the first generation BTK inhibitor, has shown activity in FL and CLL in combination with rituximab^{5,6}
- BGB-3111 is a potent and specific BTK inhibitor, designed to minimize off target inhibition of TEC- and EGFR-family kinases
 - BGB-3111 has minimal inhibitory effects against ITK and does not inhibit ITKmediated rituximab-induced ADCC⁷
- Presented here are interim results of an ongoing study of BGB-3111 in combination with obinutuzumab in patients with CLL/SLL and follicular lymphoma

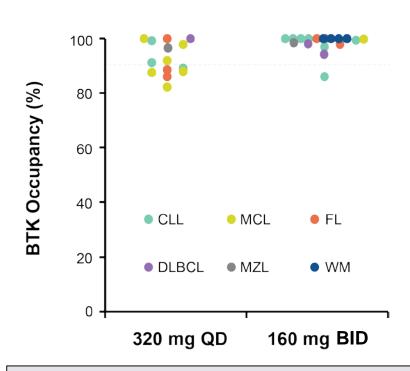
BGB-3111: Kinase Selectivity Relative to Ibrutinib

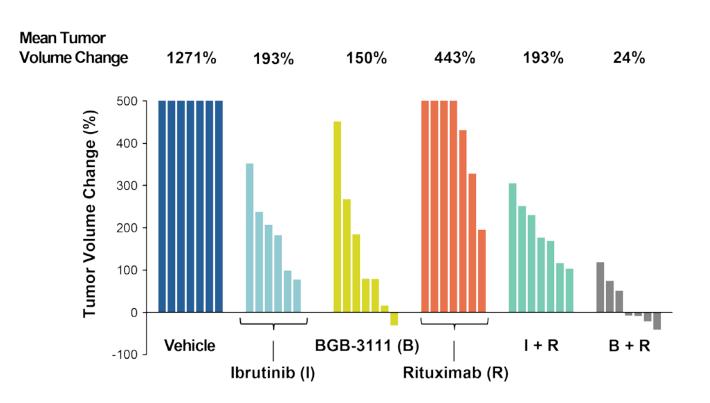
Equipotent against BTK compared to ibrutinib Higher selectivity vs EGFR, ITK, JAK3, HER2 and TEC

nigher selectivity vs EGFK, ITK, JAKS, HEKZ and TEC				
Targets	Assays	Ibrutinib IC ₅₀ (nM)	BGB-3111 IC ₅₀ (nM)	Ratio (BGB-3111:lbrutinib)
	BTK-pY223 Cellular Assay	3.5	1.8	0.5
втк	Rec-1 Proliferation	0.34	0.36	1.1
DIK	BTK Occupation Cellular Assay	2.3	2.2	1.0
	BTK Biochemical Assay	0.20	0.22	1.1
EGFR	p-EGFR HTRF Cellular Assay	101	606	6.0
EGFK	A431 Proliferation	323	3,210	9.9
	ITK Occupancy Cellular Assay	189	3,265	17
ITK	p-PLC _{γ1} Cellular Assay	77	3,433	45
ШХ	IL-2 Production Cellular Assay	260	2,536	9.8
	ITK Biochemical Assay	0.9	30	33
JAK3	JAK3 Biochemical Assay	3.9	200	51
HER2	HER2 Biochemical Assay	9.4	661	70
TEC	TEC Biochemical Assay	0.8	1.9	2.4 4


Plasma Exposure Comparison for BGB-3111 and Ibrutinib

Adapted from Advani, et al, J Clin Oncol, 2013²


Complete and Sustained BTK Occupancy in PBMC and Lymph Node


 Complete BTK occupancy in PBMCs at the starting dose (40 mg)

Lymph Node

- Paired lymph node biopsies were collected during screening and pre-dose on day 3
- Median trough occupancy: 100% (160mg BID)
 vs 94% (320mg QD), p=0.002
- Proportion >90% trough occupancy: 94% (160mg BID) vs 58% (320mg QD), p=0.027

BGB-3111 Does Not Impair Rituximab-Induced ADCC

- Published preclinical data suggest that off-target effects of ibrutinib may be detrimental to CD20 mAb-induced ADCC and the activity of the combination
- In a human MCL xenograft model, the combination of BGB-3111 and CD20 antibody demonstrated improved anti-tumor activity as compared to monotherapies and combination of ibrutinib and CD20 antibody

Study Design: BGB-3111 in Combination with Obinutuzumab

DOSE ESCALATION

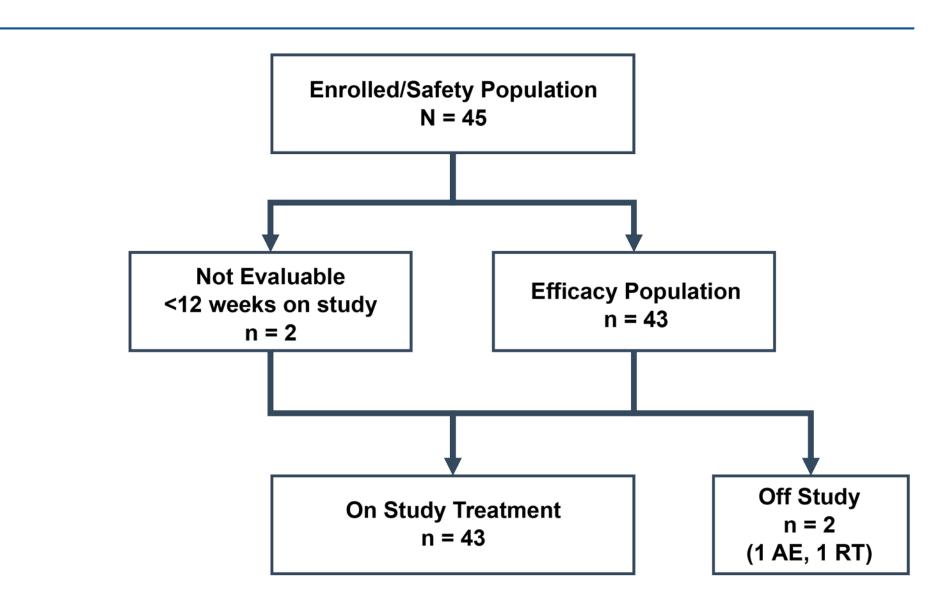
Cohort	BGB-3111* (D1-28/28-day cycles)	Obinutuzumab	Patients Dosed
1a	320 mg QD	Cycle 1 D2: 100 mg Cycle 1 D3: 900 mg	4
1b	160 mg BID	Cycle 1 D9 and D16: 1000 mg Cycles 2-6 D1: 1000 mg	5

^{*} BGB-3111 treatment continued until progression, death, or unacceptable toxicity.

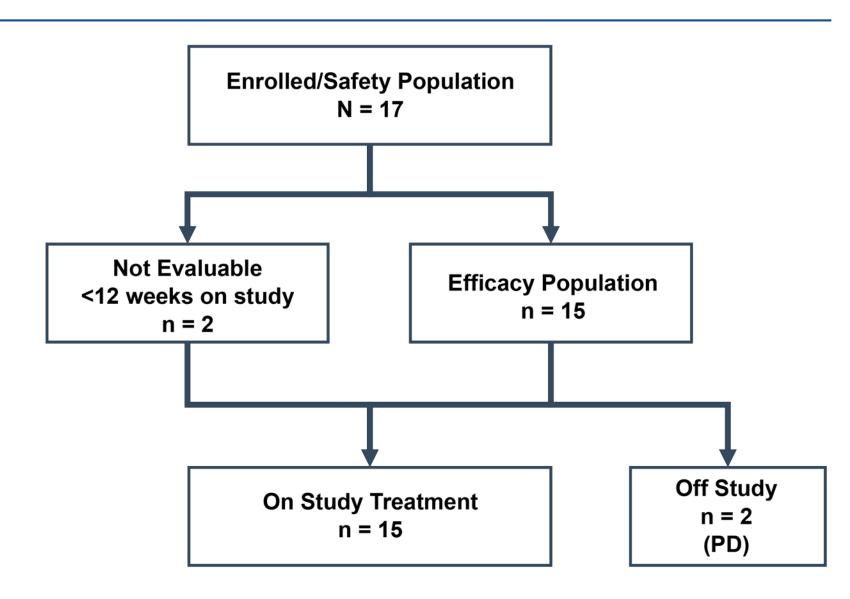
Eligibility:

- WHO defined B cell lymphoid malignancy
- ≥1 prior therapy (relapsed cohorts only)
- No available higher priority treatment
- ECOG 0-2
- ANC >1,000/µl, platelets >40,000/µl[‡]
- Adequate renal and hepatic function
- No significant cardiac disease§

DOSE EXPANSION


Рор	Disease	Planned
TN	CLL/SLL	20
R/R	CLL/SLL	20
R/R	non-GCB DLBCL	20
R/R	FL, MCL, MZL, and WM	20
R/R	FL	40

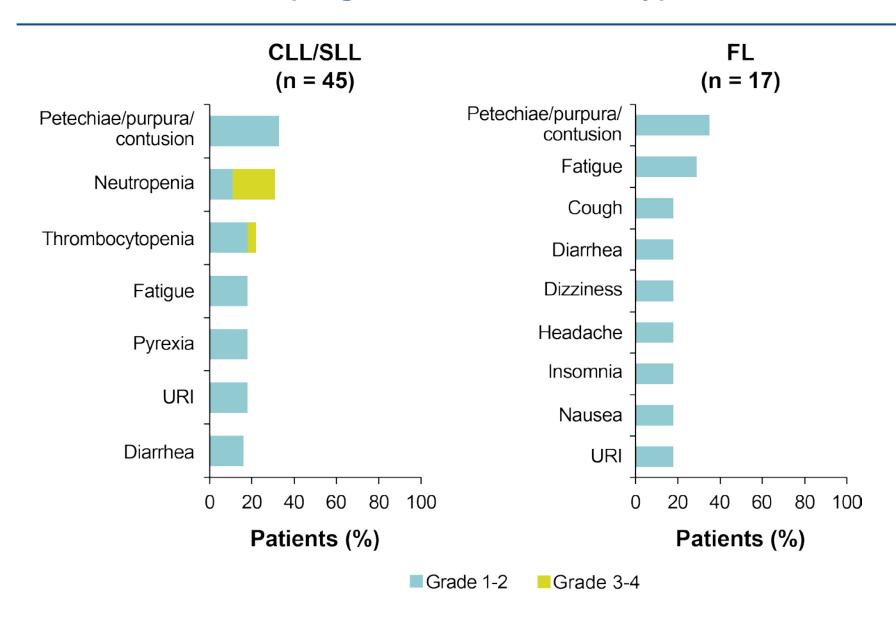
[†] Cohort -1a and -1b will be opened if 2 or more DLTs are observed in Cohorts 1a and 1b.


[‡] Growth factor/transfusion allowed.

[§]Anti-coagulation allowed.

CLL/SLL Patient Disposition (as of 31 March 2017)

FL Patient Disposition (as of 31 March 2017)



Patient and Disease Characteristics

Characteristic	CLL/SLL (n = 45)	FL (n = 17)
Age, years, median (range)	68 (38-82)	56 (41-86)
ECOG Performance Status, (%) 0 1 2	19 (42.2) 25 (55.6) 1 (2.2)	14 (82.4) 2 (11.8) 1 (5.9)
Follow-up, months, median (range)	6.5 (0.5-14.0)	7.9 (0.1-14.2)
Prior Treatment Status Treatment-naïve, n (%) Relapsed/refractory, n (%) Number of prior therapies, median (range)	20 (44.4) 25 (55.6) 1 (1-4)	0 17 (100) 3 (1-7)
Bulky Disease*,n (%)	0	2 (11.8)
Molecular Risk Factors, n (%) del17p/p53mut (n = 37) 11q- (n = 37) IGHV unmutated (n = 37) Complex karyotype (n = 37)	6 (16.2) 6 (16.2) 19 (51.4) 7 (18.9)	N/A N/A N/A N/A

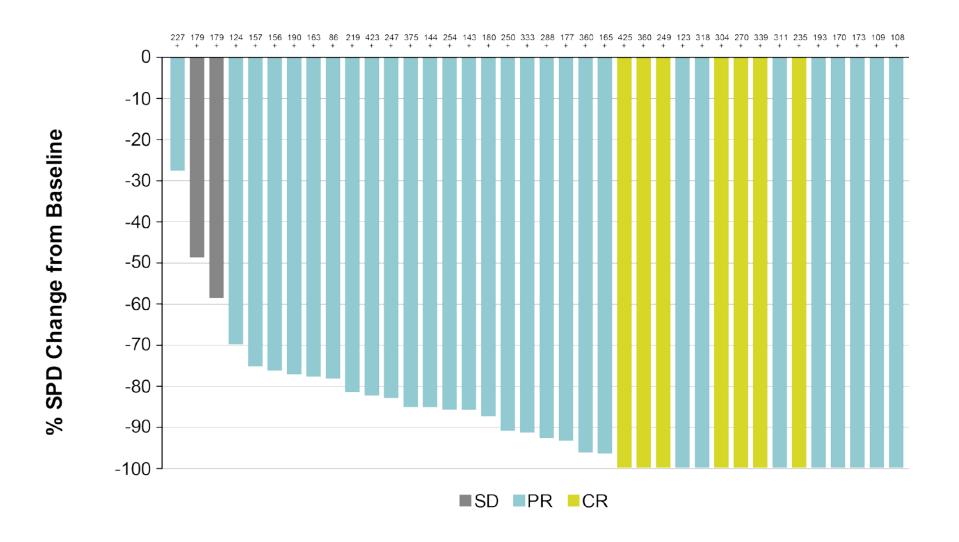
^{*} Any lymph node >10 cm in maximum diameter.

Most Common Adverse Events (Regardless of Causality)

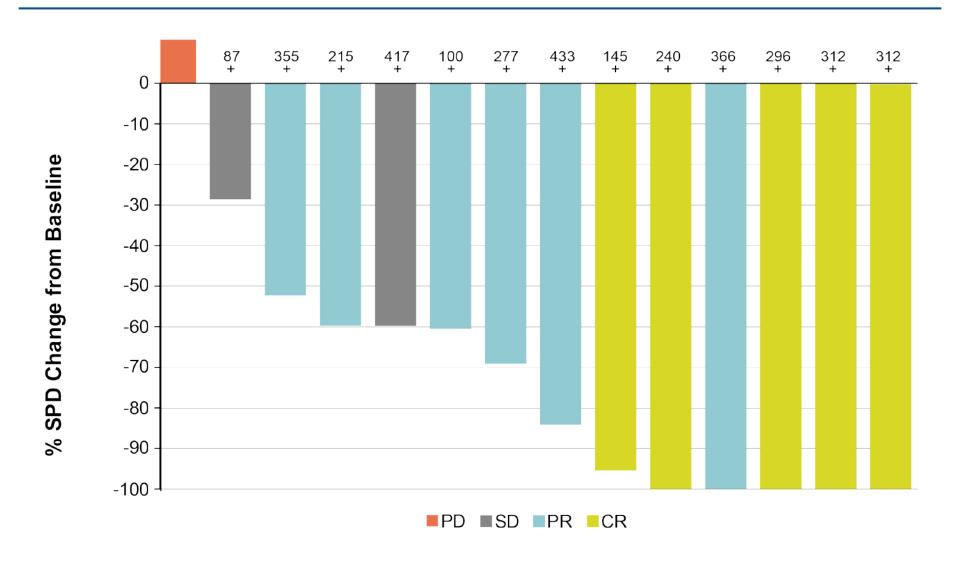
Selected Adverse Events

Event, n (%)	CLL/ SLL (n = 45)	FL (n = 17)
Patients with at least one AE Grade ≥3	19 (42.2)	4 (23.5)
Patients with at least one SAE	11 (24.4)	4 (23.5)
Events leading to treatment discontinuation	1 (2.2)*	0

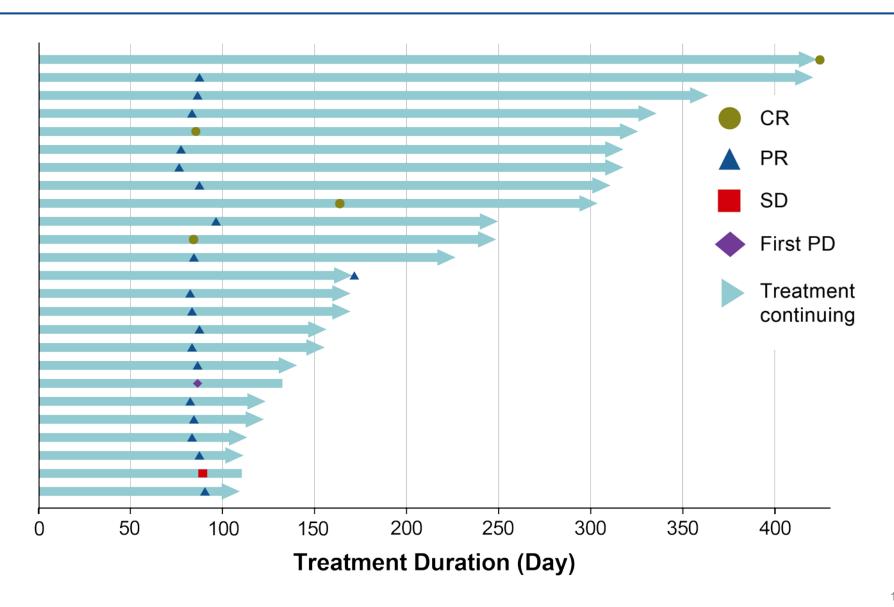
^{*} Patient with a history of squamous cell carcinoma discontinued due to squamous cell carcinoma

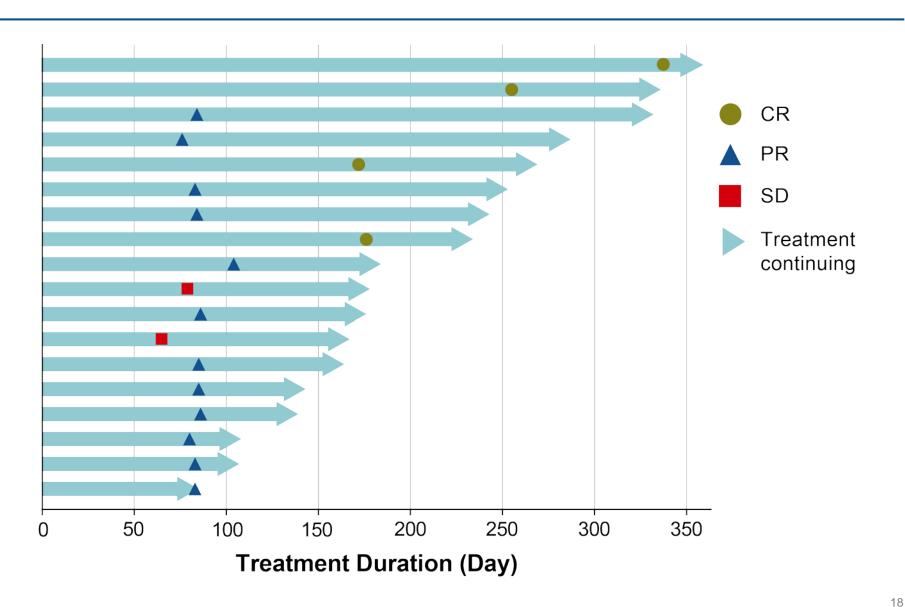

	CLL/SLL (n = 45)		FL (n = 17)	
AE of Special Interest, n (%)	All Grade	Grade 3-4	All Grade	Grade 3-4
Diarrhea	7 (15.6)	0	3 (17.6)	0
Serious hemorrhage*	0	0	0	0
Atrial fibrillation	0	0	0	0
Infusion-related reactions	11 (24.4)	1 (2.2)	1 (5.9)	0

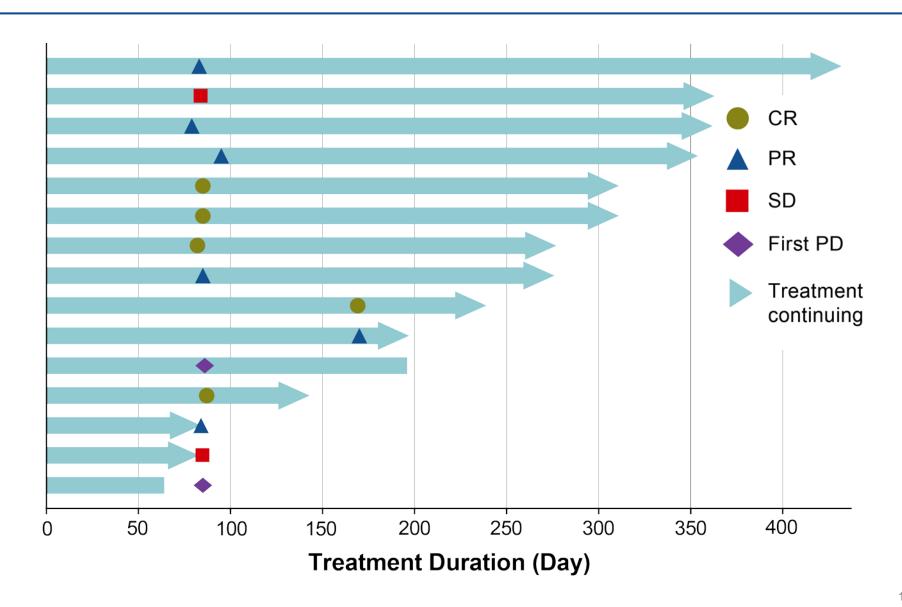
^{*} \geq Grade 3 hemorrhage, or central nervous system hemorrhage of any grade.

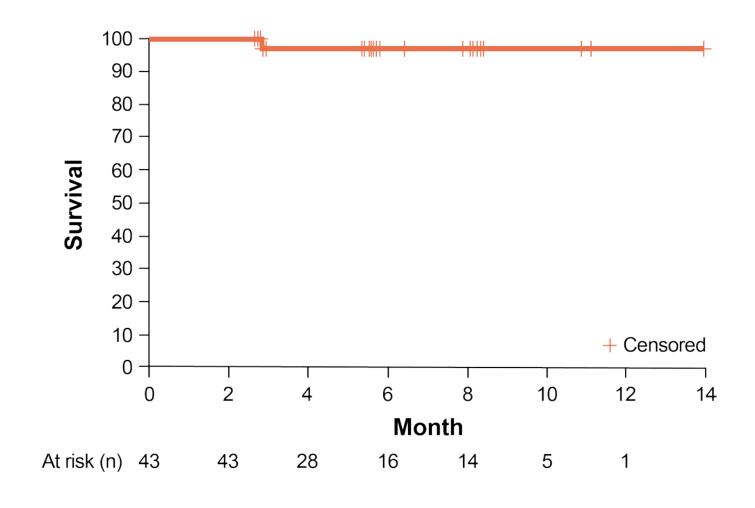

Disease Response

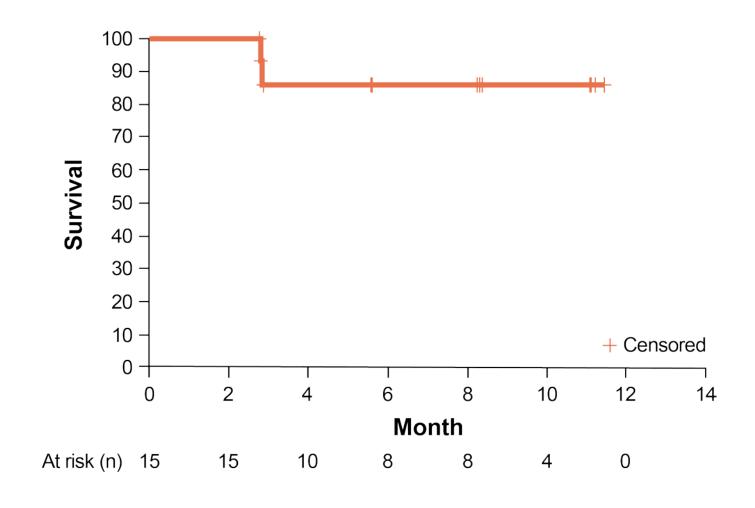
Follow-up and Response	TN CLL/SLL (n = 18)	R/R CLL/SLL (n = 25)	FL (n = 15)
Median follow-up, mo (range)	7.0 (2.8-11.8)	8.0 (3.8-14.0)	6.2 (1.2-10.7)
Best Response			
ORR	16 (88.9)	23 (92.0)	11 (73.3)
CR	4 (22.2)	4 (16.0)	5 (33.3)
PR	12 (66.7)	19 (76.0)	6 (40.0)
PR-L	0	0	N/A
SD	2 (11.1)	1 (4.0)	2 (13.3)
PD	0	1 (4.0)	2 (13.3)


CLL/SLL: Maximum Improvement in SPD


FL: Maximum Improvement in SPD


R/R CLL/SLL: Duration of Treatment


TN CLL/SLL: Duration of Treatment


FL: Duration of Treatment

CLL/SLL: Progression-Free Survival

FL: Progression-Free Survival

Conclusions

- The potent and selective BTK inhibitor BGB-3111 and the anti-CD20 antibody obinutuzumab are safe and well-tolerated when given in combination in patients with CLL/SLL and FL
- The combination of BGB-3111 and obinutuzumab is highly active in CLL/SLL and FL
- Early CR rate in CLL/SLL is favorable compared to the expected rate with BTK-inhibitors or anti-CD20 antibodies alone
- Both the frequency and depth of response in FL (overall and complete response rates) are favorable compared to reported data with BTKinhibitors or anti-CD20 antibodies alone
- BeiGene is planning late-stage trials of this combination in FL

Acknowledgments

 We would like to thank the investigators, site support staff and especially the patients for participating in this study